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Anarchic warped extra dimensional models provide a solution to the hierarchy problem. They can also 
account for the observed flavor hierarchies, but only at the expense of little hierarchy and CP problems, 
which naturally require a Kaluza–Klein (KK) scale beyond the LHC reach. We have recently shown that 
when flavor issues are decoupled, and assumed to be solved by UV physics, the framework’s parameter 
space greatly opens. Given the possibility of a lower KK scale and composite light quarks, this class of 
flavor triviality models enjoys a rather exceptional phenomenology, which is the focus of this Letter. 
We also revisit the anarchic RS EDM problem, which requires mKK � 12 TeV, and show that it is solved
within flavor triviality models. Interestingly, our framework can induce a sizable differential tt̄ forward–
backward asymmetry, and leads to an excess of massive boosted di-jet events, which may be linked to the 
recent findings of the CDF Collaboration. This feature may be observed by looking at the corresponding 
planar flow distribution, which is presented here. Finally we point out that the celebrated standard model 
preference towards a light Higgs is significantly reduced within our framework.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The Randall–Sundrum (RS) warped extra dimensional frame-
work provides a solution to the hierarchy problem [1]. The most 
studied version of this class of models is the “anarchic bulk RS” 
scenario, where the standard model (SM) fields propagate in the 
5D bulk, and the microscopic flavor parameters are generic. The 
SM gauge group is enlarged to contain a product of SU(2) and 
discrete custodial symmetries [2,3], thus greatly suppressing RS 
corrections to the electroweak (EW) observables. However, a closer 
look at this scenario shows that, despite providing a solution to 
the SM flavor puzzle [4], little hierarchies and CP problems re-
main, pushing the Kaluza–Klein (KK) scale of these models up to 
unnatural values. For instance, the contribution to electric dipole 
moments (EDMs) was found to be very roughly 20 times above the 
present bounds for an O(3 TeV) KK scale [5], the combined contri-
bution to εK [6–8] and ε′/εK [9] requires a KK scale of O(6 TeV),
and a careful EW fit to a subclass of these models (at the one-loop 
level) [10] recently showed that a KK scale above O(4 TeV) is re-
quired. All this motivates trying to naturally decouple the flavor 
and CP issues, which have nothing to do with the EW fine-tuning 
problem, and analyzing the status of this framework when the EW 
scale naturalness is the main concern. This was the subject of [10],
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which studied the “flavor trivial” case where the flavor hierarchy 
is set by UV physics on the Planck brane [11]. The resulting bulk 
RS phenomenology turns out to be significantly modified, with a 
greatly improved EW fit allowing for a KK mass below 2 TeV [10], 
while the RS εK problem is absent.

The purpose of the present Letter is to demonstrate that this 
class of flavor triviality models leads to exceptional collider phe-
nomenology. We show that the same features that lead to a suc-
cessful fit to the EW and flavor-violating observables, also yield 
unconventional signals. In fact, some of the observables discussed 
below have been already measured at the Tevatron in the context 
of the forward–backward asymmetry (FBA) in top pair production, 
a search for highly boosted tops and a study of the planar flow 
distribution of massive jets [12–16]. It is rather intriguing that 
some inconsistencies with the SM predictions have been observed. 
If confirmed at the LHC, they may support the presence of some 
sort of flavor triviality (for a complimentary study of multi-tops at 
the LHC see [17]). We also discuss how the bound on the Higgs 
mass is typically softened in our framework, and provide a quanti-
tative analysis of the RS EDM problem, showing that it is naturally 
solved with flavor triviality.

2. The model

We work in a slice of AdS5 space–time, whose fifth (con-
formal) coordinate z is bounded by two branes, at R = M−1 

Pl
∼

(1019 GeV)−1 in the UV and R ′ ∼ TeV−1 in the IR, where M is
Pl 
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the reduced Planck mass. We use the notation ε ≡ e−ξ , where ξ ≡
log(R ′/R). We impose a SU(2)L × SU(2)R × U (1)X gauge symmetry
in the bulk, and assume that the Higgs field, H, is a bulk field with
vacuum expectation value (VEV) 〈H〉 = v R ′/R3/2√1 + β(z/R ′)2+β

with v 	 246 GeV. The VEV localization in the bulk is set by β ,
and β = 0 corresponds to gauge-Higgs unified models. The SM
fermions are embedded as Q ∼ (2,2)2/3, U ∼ (1,1)2/3, D ∼
(1,3)2/3 ⊕ (3,1)2/3 and L ∼ (2,2)0, E ∼ (1,3)0 ⊕ (3,1)0.

We also gauge in the bulk the non-abelian part of the SM fla-
vor symmetry SU(3)Q × SU(3)U × SU(3)D × SU(3)L × SU(3)E . The
breaking of the flavor group occurs on the UV brane, and is shined
towards the IR by some flavon scalar fields, Φ , whose VEVs are
proportional to the 5D Yukawa matrices YU ,D,E . Thus, in contrast
to previous scenarios, we take the 5D Yukawas to be hierarchical
(similar to the 4D picture), and set by unspecified UV physics. All
flavor changing effects are then controlled by the SM Yukawa cou-
plings, thus realizing the minimal flavor violation (MFV) ansatz.

Within this model, it is possible to find sweet spots in the pa-
rameter space of the fermion bulk masses described by cQ 3 , ct ,
cb , cQ i , cU i and cDi (i = 1,2, with universal first two generation
masses) for the quark sector and cL and cE for the leptons (taken
to be fully universal).

3. Sweet spot

In order to quantify the phenomenological aspects analyzed be-
low, we consider a specific set of parameters close to one of the
sweet spots presented in [10]:

C Q 	 (0.50,0.50,0.02), C D 	 (0.63,0.63,0.57),

CU 	 (0.15,0.15,0.48). (1)

The related effective 5D Yukawa eigenvalues (which are accom-
panied by αU ,D when coupled to the Higgs, e.g. in the fermion
masses) are:

αU YU 	 (
4.3 × 10−5,0.021,4.2

)
,

αD Y D 	 (0.01,0.19,0.45). (2)

The corresponding 2σ EW bound on the KK scale is mKK �
1.7 (2.1) TeV for a six (one) parameter fit. In order to make this
sweet spot consistent with flavor bounds, we can choose αU ,D

such that the 5D bottom Yukawa becomes much bigger than
the top one, e.g. αU ,D 	 4,0.12. This leads to down alignment:
[mD , Y D ] 	 0, which effectively removes all constraints coming
from the down sector. Consequently, the above set of parame-
ters complies with flavor, at the cost of a (natural) hierarchy of
O(30) between the α’s. Note that since the one-loop contribution
to δg Zb̄b at large αD Y D is not known yet [18], we conservatively
consider only cases with (αD Y D)2 � (αU YU )2 [10]. Relaxing this
constraint would probably lead to a larger set of viable models
where no significant hierarchy between the α’s is required.

4. Electric dipole moments

We now analyze the constraints from null EDM searches. We
consider the flavor triviality case and also derive a robust bound
for the anarchic class of models. To date, the strongest bounds
come from neutron, Mercury and Thallium EDM searches. We find
that the neutron and Mercury EDMs [19,20],

∣∣dexp
n

∣∣ � 2.9 × 10−26 e cm (95% CL),∣∣dexp∣∣ � 3.1 × 10−29 e cm (95% CL), (3)
H g
are of most relevance in our case. These observables are measured
far below the QCD scale.

The neutron EDM is sensitive to the CP-odd dipole effective
operator at the TeV scale 2i × Leff ⊃ ∑

f dE
f f̄ (σ · F )γ5 f , where

f = d, s, e, . . . stands for a fermion flavor and F is the photon field
strength. We use the parton quark model (PQM) to relate the neu-
tron EDM to this set of operators, since it is the only nuclear model
including the strange quark contribution, which turns out to dom-
inate in RS. The neutron EDM is then given by (see e.g. [21] and
references therein)

dn = ηE(
�

PQM
d dE

d + �
PQM
u dE

u + �
PQM
s dE

s

)
, (4)

where

�
PQM
d,u,s 	 0.75,−0.51,−0.23; ηE 	 1.5, (5)

and dE
f are evaluated at the EW scale.

The mercury EDM is sensitive to several types of operators, but
in the current work the leading contribution is from the chromo-
electric dipole 2i × Leff ⊃ ∑

f dC
f f̄ (σ · G)γ5 f , where G is the gluon

field strength. The relation is [21]

dH g = 7 × 10−3e
(
dC

u − dC
d

)
/gs, (6)

where gs is the QCD coupling and dC
f are evaluated at 1 GeV.

Within RS, the dipole operator dE
f is induced by a one-loop pro-

cess with KK-quarks and a Higgs or a KK-gluon [5]. Since to leading
order, the KK-gluon exchange diagram is proportional to mD , hence
real, the Higgs contributions are expected to dominate. The rele-
vant RS amplitude has been calculated e.g. in [9], and the result
is

dE
f 	 ev

16π2m2
KK

× (spurion) f . (7)

The chromo-electric dipole is given by Eq. (7), with a proper re-
placement of the electromagnetic coupling of the quark with its
QCD coupling. Generically, the leading contributions have the fol-
lowing spurion dependence [5]:

(spurion)d,s = [
F †

Q

(
aN Y D Y †

D + aC YU Y †
U

)
Y D F D

]
11,22,

(spurion)u = [
F †

Q

(
aN YU Y †

U + aC Y D Y †
D

)
YU FU

]
11, (8)

where aN(C) corresponds to the neutral (charged) Higgs exchanges,
and F X are spurion matrices whose eigenvalues fxi represent the
IR projection of the quark zero-mode profiles: f 2

xi = (1 − 2cxi )/(1 −
ε1−2cxi ). Note that for models with a bulk Higgs, corrections for its
overlap with the zero-mode fermions should be taken into account
in Eq. (8), as we do implicitly throughout the Letter.

Below we provide the first robust quantitative bound on the an-
archic case, for which we follow the approach of [9,22]. We look
for the weakest bound which simultaneously minimizes the con-
tributions from εK ∝ (Y ∗

D)−2, where Y ∗
D is the average value char-

acterizing the anarchic 5D down Yukawa matrix, and d f ∝ (Y ∗
D)2.

We find that the strongest EDM bound comes from Mercury via dC
d .

Conservatively, we focus only on the neutral Higgs exchange, which
amounts to setting aC → 0 in Eq. (8) (since the charged Higgs con-
tribution is proportional to YU Y †

U , it cannot be naively added to
the neutral one or combined with εK ). The corresponding one-loop
contribution was calculated in [9,22]

dC
d ∼ 3gsmd

16π2m2

(
Y ∗

D

)2
, (9)
KK
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yielding1

dH g ∼ 1.2 × 10−27(Y ∗
D

)2
(

TeV

mKK

)2

e cm. (10)

Consequently, the resulting bound on the KK scale is

mKK � 6.2Y ∗
D TeV. (11)

Optimizing the bound in Eq. (11), w.r.t. Y ∗
D , together with the

εK bound: mKK � 8.5 gs∗/Y ∗
D TeV for a bulk Higgs with β =

0 [9] (where gs∗ ≈ 3 is the KK-gluon coupling, including one-loop
matching [22]), we find the lowest possible bound on the KK scale
for the anarchic scenario to be

mKK � 12 TeV, (12)

obtained for Y ∗
D = 2.0. Interestingly, assuming that the uncertainty

in estimating the mercury EDM in Eq. (10) is ∼50%, the uncer-
tainty on the combined bound in Eq. (12) is only O(10%).

We now switch gears to discuss the flavor triviality case. In this
model, due to the approximate down alignment the dominant con-
tributions come from the charged Higgs exchange. In the down
mass basis (spurion)s can be written as
[

DL f Q V Q U λU λ
†
U V Q λD F D

]
22, (13)

where f X and λX indicate the diagonal forms of F X and Y X , re-
spectively, while V Q (V Q U ) parameterizes the misalignment be-
tween YU and Y D (YU and C Q ) and DL is the left rotation to
the down mass basis (see Appendix B in [10]). Within the RS
linear MFV approximation (where DL = 13), EDMs are only in-
duced at the two-loop level [23,24], similar to the θ -term in
the SM. The leading contribution enters at one-loop order from
subleading terms in the MFV expansion, that are proportional to
[YU Y †

U , Y D Y †
D ] [10,25], and results in a suppression by δ ≡ Y 2

t /Y 2
b

(Yt,b correspond to the 5D bulk top and bottom Yukawas, respec-
tively). Hence, the dominant contribution to the EDM, which pro-
ceeds via Yt , comes from

(DL)23 ∼ δV Q
23, V Q U

33 	 1, V Q
23 ∼ rQ V CKM

ts , (14)

where V CKM is the Cabibbo–Kobayashi–Maskawa (CKM) matrix
and rQ ≡ f Q 3/ f Q i . Another conservative assumption taken above
is in omitting a factor of Y 2

b divided by its NDA bound, which is
necessary for the existence of a phase in (DL)23. Combining all of
the above, we estimate the s quark EDM2:

dE
s ∼ ems

8π2m2
KK

(
V CKM

ts

)2
Y 2

t δr3
Q . (15)

As a concrete example, we now analyze the sweet spot described
above around Eqs. (1) and (2). Plugging these numbers, we find

dn ∼ 4.4 × 10−27 e cm 	 0.15dexp
n , (16)

for mKK = 1.7 TeV. In [10] we reported two more flavor sweet
spots, which include a large 5D bottom Yukawa and different
contributions to CP violation in Bs mixing. The neutron EDMs
for these two sweet spots are roughly 80% and 110% of the ex-
perimental bound, while other EDMs are much lower than their
corresponding bounds. Given the O(1) uncertainties in the associ-
ated calculations, both examples can be considered consistent with
present EDM constraints.

1 The overlap correction, which is implicitly included, is ∼0.1 [9].
2 We consider only the contribution from one of the charged Higgs diagrams, as

the other (with the photon attached to the Higgs line [22]) is of the same order.
5. Collider phenomenology

The collider phenomenology of flavor triviality models is inter-
esting, since light fermions can be composite. This stems from the
fact that the EW fit prefers cU i to be as composite as possible,
although the χ2 dependence on this parameter is mild. As a re-
sult, together with a much lower KK scale, hadronic cross sections
are enhanced.3 Specifically, at the LHC, we expect the KK-gluon
production cross section to rise from the fb regime for anarchic
models to the pb one, making it accessible for early LHC discovery.
Furthermore, the compositeness of the right-handed light quarks
potentially leads to FBAs and to an excess of high-pT top pairs at
the Tevatron. Below we only focus on existing Tevatron data. We
do not attempt here to provide a complete scan of the parameter
space. Rather, to demonstrate our point that this framework leads
to exciting phenomenology, we evaluate the observables related to
the sweet spot given in Eq. (1).

The different properties of the KK-gluon compared to the anar-
chic scenario warrant a short discussion. First, the compositeness
of some of the light quarks significantly enhances its production
rate, as just mentioned. Conversely, this also increases ΓKK, the KK-
gluon width, such that4 ΓKK ∼ 0.3mKK. However, since we will be
interested in energies which are more than two widths below the
mass, it is justified to ignore effects related to the energy depen-
dence of ΓKK (see e.g. [30] and references therein for important
running width effects for lighter resonances). Overall it is expected
that the prospects for LHC discovery of the KK-gluon would be
greatly increased, for example via an enhancement of boosted top
pair production (see below). Finally, all of the above implies that
this model should enhance the signal of di-jet events, such that it
may be detected or excluded in the future.5

We now show how this class of models can lead to a large
tt̄ FBA. Specifically, the asymmetry is enlarged when focusing on
large tt̄ invariant masses, as recently found by CDF [14]. The asym-
metry observed at the Tevatron reads [12–14]

Att̄
450 = (48 ± 10 ± 4.9)%, Apred

450 = (8.8 ± 1.3)%,

Alab
CDF = (15 ± 5.0 ± 2.4)%, Apred

CDF = (3.8 ± 0.6)%,

Alab
D0 = (8 ± 4 ± 1)%, Apred

D0 = (1 ± 2)%, (17)

where Att̄
450 is the asymmetry in the tt̄ rest frame for a top pair

invariant mass Mtt̄ larger than 450 GeV, as recently measured

by CDF, and Apred
450,CDF,D0 is the SM prediction for the correspond-

ing observable. To make contact with the microscopic new physics
model, it is convenient to replace the lab frame asymmetry with a
tt̄ frame one, reported by CDF to be [12] Att̄

CDF = (16 ± 7.2 ± 1.7)%,
while the SM prediction is (5.8 ± 0.9)%.

In RS, a differential asymmetry can be generated via qq̄ anni-
hilation into a KK-gluon, which subsequently decays to a top pair.
This requires large axial couplings for both the qq̄ and tt̄ pairs to

3 Throughout this section we set the KK-gluon coupling to gs∗ 	 6 by means of
a localized kinetic term on the UV-brane, which is within the perturbative regime.
As a result of the approximate down alignment, this is still consistent with flavor
constraints.

4 Decays involving one of the lightest KK resonances of the custodian fields,
which obey (−,+) or (+,−) boundary conditions and are about 30% lighter than
the KK-gluon, are suppressed by the EW symmetry breaking scale. Also, the light-
est KK-quarks obeying (+,+) boundary conditions, those with c = 1/2, would have
the same mass as the KK-gluon at tree level, while radiative corrections and EW
symmetry breaking effects might render them marginally lighter. In any case, their
effect on the KK-gluon width is negligible [2,26–29].

5 We found our model to be marginally consistent with recent LHC data [31,32],
based on a Monte Carlo simulation of the rate of central events (rapidity cut |y| <

0.6 at the partonic center of mass system) to non-central events (|y| < 1.7).
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Fig. 1. Top pair differential forward–backward asymmetry Att̄ as a function of Mtt̄ .
Our prediction (including the SM) is in a solid blue line, while the CDF measure-
ment (at the detector level) is described by the yellow shades [14]. The black
dashed line stands for the SM partonic level prediction computed by MCFM, while
the red circles with error bars correspond to the detector level prediction from
MC@NLO [14]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

the KK-gluon, which arise from large differences between the left-
and right-handed bulk masses. Since this is a feature of our model
(as opposed to the anarchic case [33]), such an asymmetry is nat-
urally induced.

At the partonic level, the asymmetry is given by [34,35]

Â ∝ βt ŝ|D|2ataq g2
s∗

[
g2

s

(
ŝ − m2

KK

) + 2g2
s∗ ŝvt vq

]
, (18)

where D−1 ≡ ŝ − m2
KK + imKKΓKK. Here ŝ and βt ≡

√
1 − 4m2

t /ŝ

are the center of mass energy squared and the top quark veloc-
ity, respectively, in the tt̄ frame, and vq ≡ −ξ−1 + 1

2 ( f 2
qL

+ f 2
qR

)

and aq ≡ 1
2 ( f 2

qL
− f 2

qR
) are the vector and axial parts of a qq̄ pair

to the KK-gluon. We show in Fig. 1 the differential asymmetry as a
function of Mtt̄ for the above sweet spot parameters,6 compared to
the recent CDF result [14]. Note, however, that the CDF data is not
unfolded to the partonic level, so it cannot be directly compared
to the flavor triviality expectation, yet the overall trend is similar.
We also show NLO Monte Carlo predictions for the SM asymme-
try at the partonic (black dashed curve) and detector (red circles
with error bars) levels. Comparing these two curves, we learn that
the unfolding factor is rather flat. Hence we expect that the gen-
eral behavior of the unfolded distribution would be similar to the
CDF one shown in Fig. 1, thus maintaining the shape agreement
between the data and our prediction.

As an explicit comparison, we note that for the sweet spot of
Eq. (1) the asymmetry at Mtt̄ > 450 GeV is 19% (including the SM),
which is more than 2σ below the CDF measurement in Eq. (17).
Yet for the total asymmetry, our prediction is 12%, which is less
than 1σ away from the CDF result. At the same time the total tt̄
production cross section is 1.2σ below the measured value, while
the differential cross section agrees with the CDF data [35].

Another important consequence of the flavor triviality approach
is an enhanced cross section for the production of high-pT top
pairs, compared to the anarchic RS scenario (although the branch-
ing ratio for the decay of the KK-gluon to top pairs is smaller by
a factor of ∼2). This is particularly interesting in view of the re-
cent CDF study of boosted massive jets [15,16]. This analysis looks
for two massive jets, with mass of 130–210 GeV and a pT in the
range of 400–500 GeV. An excess of 3.44σ relative to a simple (yet
naive) data driven estimation of the QCD prediction is observed. If
one is to interpret this excess as coming from new physics, a new

6 We include the SM NLO contribution in a similar way to [35]. We estimate that
the uncertainty from the non-universality of the k factors is O(10%).
Fig. 2. Planar flow distribution at the Tevatron, assuming the following cuts for
any given jet: pT > 400 GeV, 130 < mjet < 210 GeV, |η| < 0.7, missing ET sig-
nificance smaller than 10 and a cone size of 1.0 (anti-kt). The solid red (dotted
blue) line denotes the QCD (QCD + tops) SM prediction, the black circles with error
bars describe the CDF data and the dashed-dotted green line is the flavor triviality
prediction (including the SM). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this Letter.)

source of hadronic tops is required with a cross section of roughly
11 ± 3.2 fb [36]. We find that our model yields a contribution
to the tt̄ hadronic cross of ∼5 fb, on top of the SM prediction
of 2 fb [15,37]. This is about 1.8σ below the observed excess.
A possible tension with the reported measurement is that no ex-
cess was found in hadronic–leptonic top pair events. However, the
corresponding search relies on a large missing energy cut, which
tends to be noisy, with somewhat smaller signal to background ra-
tio [15]. In the case of our prediction above, this tension is only at
the level of 1σ (see [36]).

The excess of top pairs implied above can be detected using
jet substructure analysis techniques. One such example is the jet
shape variable named planar flow (PF) [38] (see also [39]). High-
pT QCD jets tend to give low PF values, while top jets lead to
higher PF values. In Fig. 2 we present a comparison of the PF dis-
tribution between the SM, our model and the latest CDF data [16],
for jets with mass of 130–210 GeV and pT of 400–500 GeV. We
use MadGraph/MadEvent [40] with the Pythia package [41] and
modified MLM matching [42], and the results are interfaced to
FASTJET [43] for jet clustering. For the SM QCD + top jet PF distri-
bution, we find a ratio for the SM tt̄: QCD contributions of 1 : 13.7

This is just to illustrate the method since the QCD differential cross
section has a sizable uncertainty. It is evident that the RS contribu-
tion is somewhat closer to the data than the pure SM distribution.

6. Higgs mass dependence

It is known that the goodness-of-fit of the SM to EW preci-
sion observables strongly depends on the Higgs mass, and rapidly
deteriorates when the latter is raised above the LEP bound. Inter-
estingly, our model’s fit depends only mildly on the Higgs mass, as
can be seen in Fig. 3. Thus, large Higgs mass values are still com-
patible with the model, without spoiling the EW fit (see also [2,44]
for similar results in RS based on effectively oblique analyses). This
is due to additional contributions to the gauge boson self-energies,

7 For QCD, we use MG/ME with a modified MLM matching scheme, while for tt̄
events, we rescale the LO MG/ME cross section (without matching) to the NLO cross
section [15,37].
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Fig. 3. Comparison of �χ2 of the SM and the flavor triviality model as a function
of the Higgs mass.

which can be tuned to compensate the SM ones from a heavier
Higgs. In this context, it should be mentioned that we found an-
other χ2 minimum for mKK ∼ 9 TeV, which is slightly lower than
the one reported in [10]. However, we choose to cutoff anything
above 4 TeV, hence vetoing excessively fine-tuned models.
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