102 research outputs found

    Microscopic scale conductivity as explanation of magnetotelluric results from the Alps of Western Switzerland

    Get PDF
    Recent MT soundings carried out in the Penninic Alps of Valais have shown the presence of a very good, outcropping conductor. Extremely high conductivity was attributed to the presence of graphite. To verify this assumption, the electrical properties of borehole black shales were measured under simulated physical conditions (electrical frequency, hydrostatic confining pressure, internal fluid pressure, temperature). These measurements showed that under all physical conditions (electrical frequency, in the 0.005-200 Hz interval; hydrostatic confining pressure up to 39 MPa; internal fluid pressure up to 23 MPa; temperature up to 180 °C) one of the samples studied was very conductive (resistivity less than 2 Ωm under all physical conditions). Interestingly, despite similar macroscopic aspect, other samples from a nearby borehole were found to be only slightly conductive. Chemical, mineralogical and petrographic investigations revealed that the enhanced electrical conductivity is mostly due to textural characteristics (such as grain size and carbon film distribution at the grain boundaries) rather than to chemical difference

    Chemical reactivity of thermal treated naturally occurring amphibole asbestos

    Get PDF
    Non-occupational (environmental) exposure to naturally occurring asbestos (NOA) represents a potentially important source of risk for human health in several parts of the world. Chemical reactivity of fibres surface is one of the most relevant physical-chemical property to asbestos toxicity and is commonly associateci to the presence of Fe at the surface, and in particular to its coordination and oxidation state. However, no detailed information is still available about dependence of chemical reactivity on surface iron topochemistry, which is the basis for defining structure-activity relationships. In this work the chemical reactivity of two amphibole asbestos samples, UICC crocidolite from Koegas Mine, Northern Cape (South Africa) and fibrous tremolite from Montgomery County, Maryland (USA), was investigateci after sample heating up to 1200 °c. Ex-situ X-ray powder diffraction (XRPS and the Rietveld method), scanning (SEM) and transmission (TEM) electron microscopy were used for characterizing the minerai fibres before and after the thermal treatment. In addition, thermal stability of the of the amphibole asbestos was analysed in-situ by TG/DSC. Two conventional target molecules (H202 and Hcoo-) and the DMPO spintrapping/ EPR technique were used to measure the radical activity of both pristine and thermal treated samples. Results show that, after thermal treatment, both amphibole asbestos are completely converted into hematite, cristobalite and pyroxene, stili preserving the originai fibrous morphology (pseudomorphosis). Notably, in spite of the thermal decomposition, the heated samples show a radical production comparable to that of the pristine ones

    Dynamic earthquake rupture preserved in a creeping serpentinite shear zone

    Get PDF
    Laboratory experiments on serpentinite suggest that extreme dynamic weakening at earthquake slip rates is accompanied by amorphisation, dehydration and possible melting. However, hypotheses arising from experiments remain untested in nature, because earthquake ruptures have not previously been recognised in serpentinite shear zones. Here we document the progressive formation of high-temperature reaction products that formed by coseismic amorphisation and dehydration in a plate boundary-scale serpentinite shear zone. The highest-temperature products are aggregates of nanocrystalline olivine and enstatite, indicating minimum peak coseismic temperatures of ca. 925 ± 60 °C. Modelling suggests that frictional heating during earthquakes of magnitude 2.7–4 can satisfy the petrological constraints on the coseismic temperature profile, assuming that coseismic fluid storage capacity and permeability are increased by the development of reaction-enhanced porosity. Our results indicate that earthquake ruptures can propagate through serpentinite shear zones, and that the signatures of transient frictional heating can be preserved in the fault rock record

    Deformation processes, textural evolution and weakening in retrograde serpentinites

    Get PDF
    Serpentinites play a key role in controlling fault rheology in a wide range of geodynamic settings, from oceanic and continental rift zones to subduction zones. In this paper, we provide a summary of the most common deformation mechanisms and frictional strengths of serpentine minerals and serpentinites. We focus on deformation mechanisms in retrograde serpentinites, which show a progressive evolution from undeformed mesh and bastite pseudomorphic textures to foliated, ribbon-like textures formed by lizardite with strong crystallographic and shape preferred orientations. We also discuss the possible mechanical significance of anastomosing slickenfibre veins containing ultraweak fibrous serpentines or relatively strong splintery antigorite. Our review and new observations indicate that pressure solution and frictional sliding are the most important deformation mechanisms in retrograde serpentinite, and that they are frictionally weak (μ~0.3). The mineralogical and microstructural evolution of retrograde serpentinites during shearing suggests that a further reduction of the friction coefficient to μ of 0.15 or less may occur during deformation, resulting in a sort of continuous feedback weakening mechanism

    Ni-enrichment processes revealed by TEM imaging on garnierites

    Get PDF
    Ni-phyllosilicates, commonly grouped under the name of "garnierites", are significant nickel ores found in hydrous silicate-type Ni-laterite deposits worldwide. They usually occur as vein infillings in the lower parts of laterite profiles, and consist of fine-grained, often intimately mixed, nickelmagnesium phyllosilicates, including serpentine, talc, sepiolite, smectite and chlorite (e.g. Brindley & Maksimović, 1974)

    Epoxy Resins for Flooring Applications, an Optimal Host for Recycling Deactivated Cement Asbestos

    Get PDF
    Cement asbestos slates, commonly known as Eternit((R)) and still abundant in private and public buildings, were deactivated through a thermal process. The resulting deactivated cement asbestos powder (DCAP), a mixture of Ca-Mg-Al silicates and glass, was compounded with Pavatekno Gold 200 (PT) and Pavafloor H200/E (PF), two different epoxy resins (bisphenol A epichlorohydrin) for flooring applications. The addition of the DCAP filler to the PF samples causes a slight but acceptable decrease in the relevant mechanical properties (compressive, tensile, and flexural strengths) upon increasing DCAP content. The addition of the DCAP filler to pure epoxy (PT resin) causes a slight decrease in the tensile and flexural strengths with increasing DCAP content, while the compressive strength is almost unaffected, and the Shore hardness increases. The main mechanical properties of the PT samples are significantly better than those of the filler-bearing sample of normal production. Overall, these results suggest that DCAP can be advantageously used as filler in addition to, or in substitution for, commercial barite. In particular, the sample with 20 wt% of DCAP is the best performing in terms of compressive, tensile, and flexural strengths, whereas the sample with 30 wt% of DCAP shows the highest Shore hardness, which is an important property to be considered in flooring applications

    The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand

    Get PDF
    Abstract. Deciphering the internal structure and composition of large serpentinite-dominated shear zones will lead to an improved understanding of the rheology of the lithosphere in a range of tectonic settings. The Livingstone Fault in New Zealand is a terrane-bounding structure that separates the basal portions (peridotite; serpentinised peridotite; metagabbros) of the Dun Mountain Ophiolite Belt from the quartzofeldspathic schists of the Caples and Aspiring Terrane. Field and microstructural observations from 11 localities along a strike length of ca. 140 km show that the Livingstone Fault is a steeply dipping, serpentinite-dominated shear zone tens of metres to several hundred metres wide. The bulk shear zone has a pervasive scaly fabric that wraps around fractured and faulted pods of massive serpentinite, rodingite and partially metasomatised quartzofeldspathic schist up to a few tens of metres long. S–C fabrics and lineations in the shear zone consistently indicate a steep east-side-up shear sense, with significant local dispersion in kinematics where the shear zone fabrics wrap around pods. The scaly fabric is dominated (>98 % vol) by fine-grained (≪10 µm) fibrous chrysotile and lizardite–polygonal serpentine, but infrequent (<1 % vol) lenticular relicts of antigorite are also preserved. Dissolution seams and foliation surfaces enriched in magnetite, as well as the widespread growth of fibrous chrysotile in veins and around porphyroclasts, suggest that bulk shear zone deformation involved pressure–solution. Syn-kinematic metasomatic reactions occurred along all boundaries between serpentinite, schist and rodingite, forming multigenerational networks of nephritic tremolite veins that are interpreted to have caused reaction hardening within metasomatised portions of the shear zone. We propose a conceptual model for plate-boundary-scale serpentinite shear zones which involves bulk-distributed deformation by pressure–solution creep, accompanied by a range of physical (e.g. faulting in pods and wall rocks; smearing of magnetite along fault surfaces) or chemical (e.g. metasomatism) processes that result in localised brittle deformation within creeping shear zone segments

    Effect of chestnut tannin extract (Castanea sativa Miller) on the proliferation of Cladosporium cladosporioides on sheep cheese rind during the ripening

    Get PDF
    Strains belonging to the genus Cladosporium can cause black spots on the surface of sheep cheese, making it impossible to sell. Two water solutions of chestnut tannin extract (i) 200 g L-1 (CHE200) and (ii) 400 g L-1 (CHE400), and the chestnut tannin extract powder (CHEP) were tested in a cheese making trial in which 60 cheese units were allotted to 5 experimental groups (each of 12 cheeses: C1, control 1 without any treatment; C2, control 2 treated with a silver ion solution; and cheeses LCHE200, LCHE400, and LCHEP, treated with CHE200, CHE400, and CHEP, respectively). The cheeses were ripened in a room polluted with Cladosporium cladosporioides with the aim to create conditions for the proliferation of this fungus on the cheeses. The results indicated that chestnut tannin extract at a concentration of 200 g L-1 is capable of completely inhibiting C. cladosporioides proliferation, avoiding spoilage of the sheep cheese

    Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy

    Get PDF
    The serpentine mineral lizardite displays strong Raman anisotropy in the OH-stretching region, resulting in significant wavenumber shifts (up to ca. 14.5 cm−1) that depend on the orientation of the impinging excitation laser relative to the crystallographic axes. We quantified the relationship between crystallographic orientation and Raman wavenumber using well-characterised samples of Monte Fico lizardite by applying Raman spectroscopy and electron backscatter diffraction (EBSD) mapping on thin sections of polycrystalline samples and grain mounts of selected single crystals, as well as by a spindle stage Raman study of an oriented cylinder drilled from a single crystal. We demonstrate that the main band in the OH-stretching region undergoes a systematic shift that depends on the inclination of the c-axis of the lizardite crystal. The data are used to derive an empirical relationship between the position of this main band and the c-axis inclination of a measured lizardite crystal: y=14.5cos 4 (0.013x+0.02)+(3670±1), where y is the inclination of the c-axis with respect to the normal vector (in degrees), and x is the main band position (wavenumber in cm −1) in the OH-stretching region. This new method provides a simple and cost-effective technique for measuring and quantifying the crystallographic orientation of lizardite-bearing serpentinite fault rocks, which can be difficult to achieve using EBSD alone. In addition to the samples used to determine the above empirical relationship, we demonstrate the applicability of the technique by mapping the orientations of lizardite in a more complex sample of deformed serpentinite from Elba Island, Italy.publishedVersio

    The Herschel and IRAM CHESS Spectral Surveys of the Protostellar Shock L1157-B1: Fossil Deuteration

    Get PDF
    We present the first study of deuteration toward the protostellar shock L1157-B1, based on spectral surveys performed with the Herschel-HIFI and IRAM 30 m telescopes. The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The young (2000 yr), bright blueshifted bow shock, B1, is an ideal laboratory for studying the gas chemically enriched by the release of dust mantles due to the passage of a shock. A total of 12 emission lines (up to E_u = 63 K) of CH_(2)DOH, HDCO, and DCN are detected. In addition, two lines of NH_(2)D and HDO are tentatively reported. To estimate the deuteration, we also extracted from our spectral survey emission lines of non-deuterated isotopologues (^(13)CH_(3)OH, H_2 ^(13)CO, H^(13)CN, H_2 ^(13)CO, and NH_3). We infer higher deuteration fractions for CH_(3)OH (D/H = 0.2-2 × 10^(–2)) and H_(2)CO (5-8 × 10^(–3)) than for H_(2)O (0.4-2 × 10^(–3)), HCN (~10^(–3)), and ammonia (≤3 × 10^(–2)). The measurement of deuteration of water, formaldehyde, and methanol in L1157-B1 provides a fossil record of the gas before it was shocked by the jet driven by the protostar. A comparison with gas-grain models indicates that the gas passed through a low-density (≤10^3 cm^(–3)) phase, during which the bulk of water ices formed, followed by a phase of increasing density, up to 3 × 10^4 cm^(–3), during which formaldehyde and methanol ices formed
    • …
    corecore