76 research outputs found

    Impact of estrogen on IgG glycosylation and serum protein glycosylation in a murine model of healthy postmenopause

    Get PDF
    IntroductionThe glycosylation of immunoglobulin (Ig) G regulates IgG interaction capability with Fc gamma receptors found in all immune cells. In pathogenic conditions, estrogen can impact IgG levels and glycosylation. Following menopause, when estrogen levels decline affecting the immune system and potentially leading to a heightened susceptibility of immune activation.PurposeIn this study, we aim to determine if estrogen levels can regulate IgG glycosylation in postmenopausal healthy situations.MethodsMice were ovariectomized to simulate an estrogen-deficient postmenopausal status and then treated with 17-beta-estradiol (E2) at different doses and different administration strategies.ResultsUsing a highly sensitive liquid chromatography-tandem mass spectrometry (MS/MS) glycoproteomic method, we demonstrated that E2 treatment increased the degree of glycosylation on IgG-Fc with both galactosylation and sialylation in the position required for interaction with Fc gamma receptors. We also observed that only long-term estrogen deficiency reduces IgG levels and that estrogen status had no impact on total IgG sialylation on both Fab and Fc domains or general glycoprotein sialylation evaluated by ELISA. Furthermore, E2 status did not affect the total sialic acid content of total cells in lymphoid organs and neither B cells nor plasma cells.ConclusionThe study concluded that E2 treatment does not affect total serum glycoprotein sialylation but alters IgG glycosylation, including IgG sialylation, implying that estrogen functions as an intrinsic modulator of IgG sialylation and could thereby be one pathway by which estrogen modulates immunity

    Автоматизированная система обеспечения оптимальных условий выращивания сельскохозяйственных культур в защищенном грунте

    Get PDF
    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE

    Role of endogenous and exogenous female sex hormones in arthritis and osteoporosis development in B10.Q-ncf1*/* mice with collagen-induced chronic arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collagen-induced arthritis (CIA) is an often-used murine model for human rheumatoid arthritis (RA). Earlier studies have shown potent anti-arthritic effects with the female sex hormone estradiol and the selective estrogen receptor modulator (SERM) raloxifene in CIA in DBA/1-mice. B10.Q-ncf1<sup>*/*</sup>mice are B10.Q mice with a mutated Ncf1 gene. In B10.Q-ncf1<sup>*/*</sup>mice, CIA develops as a chronic relapsing disease, which more accurately mimics human RA. We investigated the role of endogenous and exogenous sex steroids and raloxifene in the course of this model of chronic arthritis. We also examined whether treatment would prevent the development of inflammation-triggered generalized osteoporosis.</p> <p>Methods</p> <p>Female B10.Q-ncf1<sup>*/*</sup>mice were sham-operated or ovariectomized, and CIA was induced. 22 days later, when 30% of the mice had developed arthritis, treatment with raloxifene, estradiol or vehicle was started, and the clinical disease was evaluated continuously. Treatment was continued until day 56 after immunization. At termination of the experiment (day 73), bone mineral density (BMD) was analyzed, paws were collected for histological examination, and sera were analyzed for markers of cartilage turnover and pro-inflammatory cytokines.</p> <p>Results</p> <p>Raloxifene and estradiol treatment, as well as endogenous estrogen, decreased the frequency of arthritis, prevented joint destruction and countered generalized osteoporosis. These effects were associated with lower serum levels of the pro-inflammatory cytokine IL-6.</p> <p>Conclusions</p> <p>This is the first study to show that raloxifene and estradiol can ameliorate established erosive arthritis and inflammation-triggered osteoporosis in this chronic arthritis model. We propose that treatment with raloxifene could be a beneficial addition to the treatment of postmenopausal RA.</p

    SERMs have substance specific effects on bone and these effects are mediated via ERαAF-1 in female mice

    Get PDF
    The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E(2)) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E(2), Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis

    The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice

    Get PDF
    Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-α. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a non-functional ERα had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ERα for the effects of E2 and SERMs on bone mass in males. Three mouse models lacking either ERαAF-1 (ERαAF-1(0)), ERαAF-2 (ERαAF-2(0)) or the total ERα (ERα(−/−)) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, while it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ERα(−/−) or ERαAF-2(0) mice. However, the effects of E2 in orx ERαAF-1(0) mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERαAF-1 for the effects of SERMs, we treated orx WT and ERαAF-1(0) mice with Raloxifene (Ral), Lasofoxifene (Las), Bazedoxifene (Bza) or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency towards increased cortical bone parameters. Importantly, all SERM-effects were absent in the orx ERαAF-1(0) mice. In conclusion, ERαAF-2 is required for the estrogenic effects on all evaluated parameters, while the role of ERαAF-1 is tissue specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERαAF-1. Our findings might contribute to the development of bone specific SERMs in males

    Arthritis and immune-mediated bone loss - role of estrogen signalling pathways

    Get PDF
    Objective: Rheumatoid arthritis (RA) is associated with immune-mediated bone loss and thereby increased risk for fractures. Estrogen and selective estrogen receptor modulators (SERMs) ameliorate not only the incidence and progression of experimental RA but also the immune-mediated bone loss. The aim of this thesis was to elucidate estrogen signaling pathways in arthritis and the associated immune-mediated bone loss. Methods: Arthritis and bone mineral density (BMD) were evaluated in two experimental models of arthritis, collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA). Specific estrogen receptor (ER) agonists and transgenic mouse models (total ERα knockout (KO), cartilage-specific ERα KO and ERE-luciferase reporter mice) were used, and the resulting phenotypes were examined by histological evaluation and peripheral quantitative computerized tomography. Results: The ameliorating effect of estrogen on arthritis and associated bone loss was mediated via ERα, as determined by CIA using a specific ERα agonist and confirmed in total ERα KO mice using AIA. Furthermore, the amelioration of joint destruction was mediated via ERα in non-chondrocytes but for synovitis via ERα in chondrocytes. AIA resulted not only in bone erosions, but also in decreased periarticular BMD and can be used as a model to study periarticular bone loss. The SERM raloxifene exerted its effects by inducing the classical genomic estrogen signaling pathway in bone in vivo. Conclusions: ERα mediates estrogens ameliorating effect on arthritis and immune-mediated bone loss. Estrogen ameliorates joint destruction and synovitis via ERα by two different mechanisms. Long-term treatment with estrogen is associated with significant side effects. Thus increased understanding of the mechanisms behind the beneficial effects of estrogen and SERMs is important in the search for novel treatments of arthritis, including postmenopausal RA, and immune-mediated bone loss

    Black Economic Empowerment AN INTRODUCTION FOR NON-SOUTH AFRICAN BUSINESSES

    Get PDF
    Resume: The Thesis aims to provide the reader with a sound basis for the understanding of Black Economic Empowerment in South Africa. The Thesis is written with the ambition to serve non-South African companies newly established or in the process of establishing in South Africa

    Selective inhibition of acetylcholinesterase 1 from disease-transmitting mosquitoes : design and development of new insecticides for vector control

    No full text
    Acetylcholinesterase (AChE) is an essential enzyme with an evolutionary conserved function: to terminate nerve signaling by rapid hydrolysis of the neurotransmitter acetylcholine. AChE is an important target for insecticides. Vector control by the use of insecticide-based interventions is today the main strategy for controlling mosquito-borne diseases that affect millions of people each year. However, the efficiency of many insecticides is challenged by resistant mosquito populations, lack of selectivity and off-target toxicity of currently used compounds. New selective and resistance-breaking insecticides are needed for an efficient vector control also in the future. In the work presented in this thesis, we have combined structural biology, biochemistry and medicinal chemistry to characterize mosquito AChEs and to develop selective and resistance-breaking inhibitors of this essential enzyme from two disease-transmitting mosquitoes.We have identified small but important structural and functional differences between AChE from mosquitoes and AChE from vertebrates. The significance of these differences was emphasized by a high throughput screening campaign, which made it evident that the evolutionary distant AChEs display significant differences in their molecular recognition. These findings were exploited in the design of new inhibitors. Rationally designed and developed thiourea- and phenoxyacetamide-based non-covalent inhibitors displayed high potency on both wild type and insecticide insensitive AChE from mosquitoes. The best inhibitors showed over 100-fold stronger inhibition of mosquito than human AChE, and proved insecticide potential as they killed both adult and larvae mosquitoes.We show that mosquito and human AChE have different molecular recognition and that non-covalent selective inhibition of AChE from mosquitoes is possible. We also demonstrate that inhibitors can combine selectivity with sub-micromolar potency for insecticide resistant AChE

    All murine data fro Nurkkala-Karlsson et al 2024.xlsx

    No full text
    This data demonstrates that IgG complexes need to be injected close to the bone to mediate bone loss. </p
    corecore