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Börjesson AE, Farman HH, Movérare-Skrtic S, Engdahl C,
Antal MC, Koskela A, Tuukkanen J, Carlsten H, Krust A, Cham-
bon P, Sjögren K, Lagerquist MK, Windahl SH, Ohlsson C.
SERMs have substance-specific effects on bone, and these effects are
mediated via ER�AF-1 in female mice. Am J Physiol Endocrinol
Metab 310: E912–E918, 2016. First published April 5, 2016;
doi:10.1152/ajpendo.00488.2015.—The bone-sparing effect of estro-
gens is mediated primarily via estrogen receptor (ER)�, which stim-
ulates gene transcription through activation function (AF)-1 and AF-2.
The role of ER�AF-1 for the estradiol (E2) effects is tissue specific.
The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene
(Las), and bazedoxifene (Bza) can be used to treat postmenopausal
osteoporosis. They all reduce the risk for vertebral fractures, whereas
Las and partly Bza, but not Ral, reduce the risk for nonvertebral
fractures. Here, we have compared the tissue specificity of Ral, Las,
and Bza and evaluated the role of ER�AF-1 for the effects of these
SERMs, with an emphasis on bone parameters. We treated ovariec-
tomized (OVX) wild-type (WT) mice and OVX mice lacking
ER�AF-1 (ER�AF-10) with E2, Ral, Las, or Bza. All three SERMs
increased trabecular bone mass in the axial skeleton. In the appendic-
ular skeleton, only Las increased the trabecular bone volume/tissue
volume and trabecular number, whereas both Ral and Las increased
the cortical bone thickness and strength. However, Ral also increased
cortical porosity. The three SERMs had only a minor effect on uterine
weight. Notably, all evaluated effects of these SERMs were absent in
ovx ER�AF-10 mice. In conclusion, all SERMs had similar effects on
axial bone mass. However, the SERMs had slightly different effects
on the appendicular skeleton since only Las increased the trabecular
bone mass and only Ral increased the cortical porosity. Importantly,
all SERM effects require a functional ER�AF-1 in female mice. These
results could lead to development of more specific treatments for
osteoporosis.

estrogen receptor; estrogen; selective estrogen receptor modulators;
mouse; osteoporosis; activation function-1 of estrogen receptor-�

ESTROGENS ARE MAJOR ENDOCRINE REGULATORS involved in the
skeletal growth and maintenance in both men and women (20,
28, 51). The bone-sparing effect of estrogens is mediated
mainly via estrogen receptor (ER)�, but the effect of ER� can

be slightly modulated by ER� in female mice (37, 47, 54, 56).
Although treatment with estrogens increases bones mass, it is
associated with adverse effects such as an increased risk for
venous thromboembolism and breast cancer (9, 14). Selective
estrogen receptor modulators (SERMs) exert both agonistic
and antagonistic effects in a tissue-specific manner by binding
to the ERs (26). Some SERMs exert agonistic effects in bone
and antagonistic effects in breast, but although they have less
adverse effects than estradiol (E2), they still increase the risk
for, e.g., venous thromboembolism (12, 13, 16, 46). Thus, it is
of importance to further characterize the tissue-specific signal-
ing pathways of SERMs to develop new bone-specific SERMs.

Recently, many studies have focused on identifying target
cells for the estrogenic effects of ER� in bone (24, 52). These
studies, together with studies on the importance of certain
domains of ER�, have made the signaling pathways of ER� in
bone clearer. It is now known that estrogen signaling via ER�
in osteoblast lineage cells is crucial for the cortical bone mass
in female mice (1, 23, 24, 29, 44, 52). For the trabecular bone
mass in female mice, estrogen signaling via ER� in osteoclast
lineage cells is important (25, 35, 44), but there is also
moderate evidence that late osteoblast lineage cells are in-
volved (23, 29, 44). In addition, we have demonstrated recently
that ER�AF-2 seems to be required for all estrogenic effects in
all tissues (6), whereas the role of ER�AF-1 for the effects of
E2 in females is tissue specific, with a crucial role in trabecular
bone and uterus but not in cortical bone or for vasculoprotec-
tive actions (5, 6). The signaling pathways of SERMs via ER�
are not yet fully investigated in female mice.

In vitro studies have shown that the estrogen-induced trans-
activation of ER� is mediated by the ligand-independent acti-
vation function (AF)-1 in the NH2-terminal and/or the ligand-
dependent AF-2 in the ligand-binding domain of ER�. It has
been shown that the full ligand-dependent transcriptional ac-
tivity of ER� is reached through a synergism between
ER�AF-1 and ER�AF-2 (22, 30, 31, 38, 49). The AFs interact
with several different coregulators (coactivators/corepressors).
The balance of the coregulators is a critical determinant of the
ability of ER� to regulate gene transcription, and this balance
differs between cell types (4, 31, 49). Some coregulators are
specific for either ER�AF-1 or ER�AF-2, whereas some co-
regulators bind to both (27). Variations in the expression of
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coregulators and the recruitment of coregulators to the ER� in
different cell types also appear to have an important role for the
tissue-specific effects of SERMs (4, 48). It is thus interesting to
study the in vivo role of ER�AF-1 for the effects of SERMs in
female mice.

In contrast to E2, many SERMs have a bulky side chain that
protrudes from the ligand-binding pocket of ER�, which hin-
ders the formation of ER�AF-2 (7). In vitro studies of the
SERM-receptor complex suggest that the effects of SERMs
involve ER�AF-1 and regions of ER� other than ER�AF-2 (4,
7, 17, 36, 40, 45, 48). However, we recently showed in vivo
that female mice lacking ER�AF-2 (ER�AF-20 mice) did not
respond to SERM treatment in the estrogen-responsive tissues
bone, uterus, and thymus (32), suggesting that a functional
ER�AF-2 is also crucial for the ability of the SERMs to
activate ER�.

Cortical bone mass is a major determinant of bone strength
and nonvertebral fracture risk (59). In addition, the cortical
microstructural parameter cortical porosity has recently
emerged as a major determinant of cortical bone quality and
thereby cortical bone strength. Importantly, cortical porosity
has recently been described to predict fracture risk indepen-
dently of areal bone mineral density (aBMD) (2, 3, 59). It has
also been proposed that age-related increase in cortical porosity
is a major determinant of age-dependent reduction of cortical
bone strength (8, 43, 57, 58). The regulation of cortical poros-
ity is mainly unknown, but we recently showed that serum E2

levels are inversely associated with cortical porosity (50). It is
not reported whether SERMs regulate cortical porosity.

The three SERMs raloxifene (Ral), lasofoxifene (Las), and
bazedoxifene (Bza) all reduce the risk for vertebral fractures
(12, 13, 16, 46). In addition, Las, but not Ral, has been shown
to reduce the risk for nonvertebral fractures in postmenopausal
women (13, 16). Also, Bza has been shown to reduce the risk
for nonvertebral fractures in women who have a higher risk for
fractures (46). The aim of the present study was to compare the
tissue specificity of Ral, Las, and Bza and evaluate the in vivo
role of ER�AF-1 for the effects of these SERMs in ovariec-
tomized (OVX) female mice, with an emphasis on axial and
appendicular microstructural bone parameters.

MATERIALS AND METHODS

Animals

The Ethics Committee of the University of Gothenburg approved
all experimental procedures involving animals (permit no. 251-2009).
The mice had free access to fresh water and chow. Before surgery all
animals received analgesics, and all surgery was performed under
isoflurane inhalation anesthesia. All efforts were made to minimize
suffering. The generation of ER�AF-10 mice (5, 6) has been described
previously. Briefly, the ER�AF-10 mice have a specific deletion of
AF-1 and do not express any full-length 66-kDa ER� protein. Instead,
they express a truncated 49-kDa ER� protein that lacks AF-1 and also
the physiologically occurring but less abundantly expressed 46-kDa
ER� isoform. The ER�AF-10 protein has been shown in vivo to be
expressed in similar amounts as the WT ER� protein (5). The
ER�AF-10 mice and their littermate WT controls were inbred
C57BL/6 mice and generated by breeding heterozygous females and
males.

OVX was performed on 8-wk-old ER�AF-10 and WT control
mice. After 1 wk of recovery the OVX mice were weight matched into
treatment groups receiving subcutaneous injections 5 days/wk for
3 wk with either vehicle (Veh; Miglyol 812; OmyaPeralta, Hamburg,

Germany), E2 (1 �g·mouse�1·day�1; Sigma-Aldrich, St. Louis, MO),
Ral (60 �g·mouse�1·day�1; Sigma-Aldrich), Las (4 �g·mouse�1·day�1;
Pfizer, Groton, CT), or Bza (12 �g·mouse�1·day�1; Pfizer) (n � 7–11
mice/group). The mice were housed together according to treatment
group. After 3 wk of treatment, the blood was collected from the axillary
vein under anesthesia with ketamine (Pfizer, Sollentuna, Sweden) and
dexdomitor vet (Orion, Espoo, Finland), and the mice were subsequently
euthanized by cervical dislocation. The E2 and Ral doses were the same
as in our previous experiments (15, 18), where the E2 dose has been
shown to correspond to low diestrus E2 levels in mice (39). The Las and
Bza doses chosen were based on previously published dose-response
studies in rats (19, 21). We aimed for a dose that gave a clear effect
on BMD in rats. To convert these doses to a similar dose in mice,
body surface area calculations were performed (42). The doses used
for Ral, Las, and Bza are shown relevant because of their ability to
increase the lumbar spine aBMD to the same extent as E2 (Fig. 1A).
Studies in rats have shown that the half-lives of these SERMs are 13.5 h
for Ral (11), 9.4 h for Las (41), and 3.8 h for Bza (10). The substances
were given once/day, 5 days/wk, for 3 wk. Since this is a long-term
treatment and we are interested mainly in the static bone parameters,
which respond slowly to changes, the small difference in half-life of
these substances does probably not have an effect on these outcomes.
The mice remained healthy throughout the experiment.

Dual-Energy X-Ray Absorptiometry

Analyses of total body aBMD and lumbar spine aBMD were
performed by dual-energy X-ray absorptiometry (DEXA) using the
Lunar PIXImus mouse densitometer (Wipro GE Healthcare, Madison,
WI).

Microcomputed Tomography

Microcomputed tomography (�CT) analyses on the axial skeleton
were performed on the lumbar vertebra 5 (L5) by using a Skyscan
(Aartselaar, Belgium) 1072 scanner imaged with an X-ray tube
voltage of 100 kV and current of 98 �A, with a 1-mm aluminum filter
(34). The scanning angular rotation was 180° and the angular incre-
ment 0.90°. The voxel size was 6.51 �m isotropically. Data sets were
reconstructed using a modified Feldkamp algorithm and segmented
into binary images using adaptive local thresholding (53). The trabec-
ular bone in the vertebral body caudal of the pedicles was selected for
analyses, as described previously (6).

High-Resolution �CT

High-resolution �CT analyses on the appendicular skeleton were
performed on the distal femur by using an 1172 model �CT (Bruker
Micro-CT, Aartselaar, Belgium). The femurs were imaged with an
X-ray tube voltage of 50 kV and current of 201 �A, with a 0.5-mm
aluminum filter. The scanning angular rotation was 180° and the
angular increment 0.70°. The voxel size was 4.48 �m isotropically.
The NRecon (version 1.6.9) was employed to perform the reconstruc-
tion following the scans (33). In the femur, cortical measurements
were performed in the diaphyseal region of the femur starting at a
distance of 4.89 mm from the growth plate and extending a further
longitudinal distance of 449 �m in the proximal direction. For BMD
analysis, the equipment was calibrated with ceramic standard samples.
The porosity was evaluated for the outer 49.3 �m of the cortical bone
to avoid endosteal trabecular bone to interfere with the analysis.

Three-Point Bending

Immediately after the dissection, the femurs were fixed in
Bürkhardt’s formaldehyde for 2 days and after that stored in 70%
ethanol. The bones were rinsed in PBS for 24 h before the mechanical
testing. The three-point bending test (span length 5.5 mm, loading
speed 0.155 mm/min) at the midfemur was made using an Instron
universal testing machine (Instron 3366; Instron, Norwood, MA).
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Based on the recorded load deformation curves, the biomechanical
parameters were acquired from raw files produced by Bluehill 2
software version 2.6 (Instron) with custom-made Excel macros.

Statistical Analysis

For statistical evaluation, Student’s t-test with Bonferroni correc-
tion was used for comparing the E2-, Ral-, Las-, and Bza-treated
groups with the Veh-treated group (4 comparisons).

RESULTS

The Skeletal Effects of SERMs in WT Mice

OVX WT mice were treated with three different SERMs
(Ral, Las, or Bza), E2, or Veh to evaluate the effects of these
SERMs on E2-responsive bone parameters. All evaluated bone
parameters in the axial (Fig. 1) and appendicular (Fig. 2)
skeleton (except for cortical porosity) had a clear response to
E2 treatment. The effects of SERMs on the axial and appen-
dicular skeleton are presented below. DEXA analysis showed
that total body aBMD was increased by all three SERMs
compared with Veh-treated mice (Table 1).

Axial skeleton. The axial skeleton was specifically analyzed
by DEXA and �CT. All three SERMs increased the lumbar
spine aBMD, and their effects were comparable with the effect
of E2 (Fig. 1A). Further analysis of the axial skeleton showed
that all three SERMs increased the trabecular thickness in the
vertebrae (Fig. 1B). Ral and Bza treatment also increased the
vertebral trabecular bone volume/tissue volume (BV/TV), and
a similar nonsignificant trend was seen in the Las-treated mice
(Fig. 1C).

Appendicular skeleton. The appendicular skeleton was ana-
lyzed by high-resolution �CT. This showed that Las was the
only SERM increasing the trabecular BV/TV (Fig. 2A) and
trabecular number (Tb.N.; Fig. 2B) in the distal metaphyseal
region of the femur, albeit not to the same extent as E2 (E2:
186% increase in BV/TV and 224% increase in Tb.N.; Las:
46% increase in BV/TV and 39% increase in Tb.N.). The

cortical thickness in the middiaphyseal region of femur was
increased when the mice were treated with Ral and Las (Fig.
2C) compared with Veh-treated controls. For the Bza-treated
mice, the increase in cortical thickness compared with Veh-
treated controls did not reach significance after the conserva-
tive Bonferroni correction (P � 0.023, for 4 comparisons
Bonferroni correction requires P � 0.013; Fig. 2C). In accord
with the increase in cortical thickness, the biomechanical
strength of the middiaphyseal region of femurs was increased
after treatment with Ral and Las (Fig. 2D). Interestingly,
however, Ral, but not Las or Bza, increased the cortical
porosity (Fig. 2E).

The Effects of SERMs in Uterus and Thymus in WT Mice

The effects of Ral, Las, and Bza were also evaluated in the
major estrogen target tissues: uterus and thymus. As expected,
E2 increased the uterine weight, whereas it reduced the thymus
weight in the OVX WT mice. The three SERMs exerted no or
minor estrogenic effects on uterine weight (Table 1). The
thymus weight was slightly but significantly decreased in the
OVX WT mice treated with Ral and Las but not in the OVX
WT mice treated with Bza (Table 1).

The Effects of SERMs Require a Functional ER�AF-1 in All
Evaluated Tissues

Similarly, as we have shown recently (6), E2 exerted tissue-
specific estrogenic effects in female ER�AF-10 mice. Because
in vitro studies indicate that ER�AF-1 is involved in mediating
the estrogenic effects of SERMs, we evaluated the effect of
Ral, Las, and Bza in OVX female ER�AF-10 mice. Notably,
there were no effects of Ral, Las, or Bza on any of the
evaluated skeletal parameters, uterine, or thymus weight in the
OVX ER�AF-10 mice (Figs. 1 and 2 and Table 1). These
results demonstrate that a functional ER�AF-1 is required for
mediating the effects of Ral, Las, and Bza in all evaluated
tissues.

Fig. 1. Effects of selective estrogen receptor
modulator (SERM) treatment on the axial
skeleton in ovariectomized (OVX) wild-type
(WT) mice and OVX mice lacking activa-
tion function (AF)-1 of estrogen receptor-�
(ER�AF-10). OVX WT and ER�AF-10 mice
were treated with vehicle (Veh), estradiol
(E2), raloxifene (Ral), lasofoxifene (Las), or
bazedoxifene (Bza) for 3 wk. A: lumbar
spine (LS) areal bone mineral density
(aBMD) was analyzed by dual-energy X-ray
absorptiometry. B and C: trabecular thick-
ness (Tb.Th.) in the lumbar vertebra 5 (B)
and trabecular bone volume/tissue volume
(BV/TV; C) were analyzed by microcom-
puted tomography (�CT). *P � 0.05 vs.
vehicle-treated OVX mice, Student’s t-test
Bonferroni corrected. Values are given as
means � SE (n � 7–11).
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DISCUSSION

Estrogens and SERMs increase bone mass but also lead to
severe adverse effects (9, 14). Thus, it is of importance to
further characterize the tissue-specific signaling pathways of
estrogens and SERMs. We herein compared the tissue speci-
ficity of Ral, Las, and Bza and evaluated the in vivo role of
ER�AF-1 for the effects of these SERMs in OVX female mice,
with a special emphasis on the microstructural parameters in
axial and appendicular bone. We demonstrate that all three
SERMs increase the trabecular bone mass in the axial skeleton
and cortical thickness in the appendicular skeleton, although
the Bza-treated group is borderline significant. We speculate
that there is a possibility that the quality of the metaphyseal
region of the appendicular skeleton is better in the Las-treated
group than in the Ral-treated group, shown by a significantly
increased femoral trabecular bone mass in the Las-treated

group. In addition, the Ral-treated group had an increased
femoral cortical porosity that suggests reduced cortical bone
quality. However, the results from the maximal load at failure
in the diaphyseal region of the femur oppose this conclusion
since the Ral-treated mice had bones at least as strong as the
Las-treated mice. Importantly, all evaluated bone and nonbone
effects of these SERMs required a functional ER�AF-1.

It is well established that the SERM Ral reduces the risk for
vertebral but not nonvertebral fractures in postmenopausal
women (16). The strength of the axial skeleton is highly
dependent on the trabecular bone, whereas appendicular skel-
eton has a higher cortical bone content. One may speculate that
Ral exerts mainly beneficial effects on axial trabecular bone.
The newer SERMs Las and, to some extent, also Bza reduce
the risk of both vertebral and nonvertebral fractures (13, 46).
Therefore, it is possible that Las and Bza would exert an

Fig. 2. Effects of SERM treatment on the
appendicular skeleton in OVX WT and
ER�AF-10 mice. OVX WT and ER�AF-10

mice were treated with vehicle (Veh), estra-
diol (E2), raloxifene (Ral), lasofoxifene (Las),
or bazedoxifene (Bza) for 3 wk. Trabecular
bone volume/tissue volume (BV/TV; A), tra-
becular number (Tb. N.; B), and cortical thick-
ness (Ct. Th; C) in the femur were analyzed by
high-resolution �CT. Maximal load at failure
(Max.Load) of the femur was analyzed by
3-point bending (D), and femoral cortical po-
rosity (Ct. Po) was analyzed by high-resolu-
tion �CT (E). *P � 0.05 vs. Veh-treated OVX
mice, Student’s t-test Bonferroni corrected.
Values are given as means � SE (n � 7–10).

Table 1. Effects of SERM treatment in OVX WT and ER�AF-10 mice

OVX WT Ovx ER�AF-10

Veh E2 Ral Las Bza Veh E2 Ral Las Bza

Total body aBMD,
mg/cm2 41.5 � 0.4 46.0 � 0.8* 44.4 � 0.5* 43.6 � 0.6* 43.9 � 0.3* 40.8 � 0.5 42.4 � 0.7 41.1 � 0.4 41.0 � 0.6 41.6 � 0.4

Uterus weight/
BW, % 0.045 � 0.002 0.582 � 0.038* 0.083 � 0.004* 0.151 � 0.006* 0.057 � 0.005 0.025 � 0.001 0.121 � 0.009* 0.029 � 0.003 0.027 � 0.002 0.025 � 0.003

Thymus weight/
BW, % 0.33 � 0.012 0.096 � 0.006* 0.27 � 0.011* 0.27 � 0.010* 0.29 � 0.013 0.32 � 0.015 0.31 � 0.011 0.33 � 0.015 0.29 � 0.010 0.31 � 0.016

SERM, selective estrogen receptor modulator; OVX, ovariectomized; WT, wild type; ER�AF-10, OVX mice lacking activation function (AF)-1 of estrogen
receptor-�; Veh, vehicle; E2, estradiol; Ral, raloxifene; Las, lasofoxifene; Bza, bazedoxifene; aBMD, areal bone mineral density; BW, body weight. OVX WT
and ER�AF-10 mice were treated with Veh, E2, Ral, Las, or Bza for 3 wk. The total body aBMD was analyzed by dual-energy X-ray absorptiometry. *P � 0.05
vs. Veh-treated OVX mice, Student’s t-test Bonferroni corrected. Values are given as means � SE (n � 7–11).
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overall better effect on both cortical and trabecular bone of the
appendicular skeleton. We demonstrated that Ral, Las, and Bza
all increased the trabecular bone mass in the axial skeleton,
shown by increased lumbar spine aBMD and trabecular thick-
ness in vertebra. This is consistent with the fact that they all
reduce vertebral fracture risk in humans (13, 16, 46). Both Ral
and Las significantly increased the cortical bone thickness in
the appendicular skeleton, whereas the effect of Bza was only
nominally significant. The increase in cortical thickness corre-
lates well with the bone strength, evaluated by three-point
bending, since both Ral and Las had an increased maximal load
at failure. Interestingly, a possible explanation for the lack of
significant effect of Ral on nonvertebral fracture risk could be
due to the finding that Ral significantly increased cortical
porosity in the appendicular skeleton. Thus, the stimulatory
effect of Ral on cortical bone mass may be somewhat coun-
teracted by the increased cortical porosity. In contrast, Las (and
Bza) increased the cortical thickness without significantly in-
creasing the cortical porosity. It is also worth noticing that it
was only Las treatment that led to an increased trabecular
BV/TV and trabecular number in the appendicular skeleton.
Since the measurement of bone strength was made in the
midfemur, where there is no trabecular bone, it is possible that
the increased appendicular trabecular bone mass may also
explain the effect of Las on nonvertebral fractures since the
proximal femur is a common site for osteoporotic fractures and
consists of both cortical and trabecular bone. Collectively, we
speculate that the findings of the effects of Ral and Las on axial
and appendicular bone microstructure may at least partly ex-
plain why Ral and Las reduce the risk for vertebral fractures,
whereas Las, but not Ral, reduces the risk for nonvertebral
fractures in humans.

In our previous study (6), we showed that the mice lacking
AF-1 (ER�AF-10) have an essentially normal E2 response on
cortical bone thickness, i.e., 94 � 12% of the E2 response in
WT mice. In the present study, we show that E2 also give a
clear E2 response in cortical bone. However, this time the
response is less pronounced (47 � 11% of the E2 response in
WT mice). This might be explained by the different doses of
E2, length of treatment, and routes of administration. In our
previous study, the mice had a subcutaneous pellet inserted that
continuously released 0.167 �g E2/day for 4 wk, whereas in
this study the mice were injected with 1 �g E2/day, 5 days/wk,
for 3 wk.

It is important to find the parts of ER� that are crucial for
mediating the estrogenic responses from E2 or SERMs to find
more specific treatments for postmenopausal osteoporosis. It
has already been shown by using mouse models that different
parts of ER� may be more or less important for mediating the
estrogenic effects in different tissues (5, 6, 32, 55). We have
demonstrated recently that the role of ER�AF-1 for the effects
of E2 in female mice is tissue specific (6), but the in vivo role
of ER�AF-1 for the effects of SERMs in female mice is
unknown. In vitro studies have suggested that ER�AF-1 is the
most important AF for mediating the SERM effects (4, 7, 17,
36, 40, 45, 48). The results in this study show, for the first time
in vivo in females, that ER�AF-1 is required for mediating
the effects of Las, Ral, and Bza on all evaluated bone
parameters, uterus, and thymus. In addition, we have re-
ported recently that the ER�AF-2 is required for mediating
the bone, uterus, and thymus effects of SERMs (32). To-

gether, these studies suggest that both a functional
ER�AF-1 and ER�AF-2 are crucial for the SERMs to have
an effect. Since it has been shown that helix 12 interacts
with the static part of ER�AF-2 and mimics a coregulatory
binding when a SERM is bound (7, 45), we speculate that
when the ER� amino acids 543–549 in helix 12 are deleted
(as in ER�AF-20 mice), helix 12 cannot interact with this
static ER�AF-2 region when a SERM is bound. The static
part would then still be visible and possibly be able to interact
with corepressors, repressing the activity of the SERMs, which
now would not be able to activate ER� via ER�AF-1 (7, 36,
45). In addition, if ER�AF-1 is deleted and a SERM binds to
the ER�, the helix 12 interacts with the static part of ER�AF-2,
and no coregulators can interact with either ER�AF-1 or
ER�AF-2. The ER�-dependent gene transcription would thus
probably be absent in the evaluated tissues in the ER�AF-10

mice (4, 17, 40, 48). We speculate that this is the reason why
both a functional ER�AF-1 and ER�AF-2 are required for
mediating the effects of SERMs. In addition, the SERM-ER�
interactions are not able to replace ER� in the evaluated tissues
in the female mice.

One of the most important characteristics of all SERMs is
that they have fewer agonistic effects on the reproductive
system than E2 (26). Our results are in accord with this since
we show that none of the SERMs had a major estrogenic
response in the uterus, and although Ral and Las increase the
uterus weight significantly, their response is less than 20% of
the E2 response.

In conclusion, all three SERMs increase the axial trabecular
bone mass. Ral and Las increase appendicular cortical thick-
ness, but Ral also increases cortical porosity, whereas Las
increases the appendicular trabecular bone mass. These find-
ings may explain why all three SERMs reduce the risk for
vertebral fractures, whereas Las, but not Ral, reduces the risk
for nonvertebral fractures. Our data suggest that SERMs can
regulate cortical porosity; however, the mechanism for this
needs to be evaluated further. Importantly, all of the effects of
Ral, Las, and Bza activate ER� via the ER�AF-1 in female
mice, whereas E2 can activate the ER� in cortical bone via
parts of the ER� other than ER�AF-1. It may be favorable to
develop a new class of SERMs for treatment of female osteo-
porosis, not acting via the ER�AF-1, to have beneficial effects
on nonvertebral fracture risk without having major adverse
effects on the reproductive system in female mice.
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