81 research outputs found

    Working conditions, neighbourhood deprivation and quality of life among people with diabetes: a cross-sectional study

    Get PDF
    Diabetes is a chronic metabolic disorder that requires constant management to maintain good health and quality of life. Poorly managed diabetes could lead to serious complications and early death. With the ageing demographic profile, there is growing recognition that older people, including those with diabetes, are increasingly becoming a significant proportion of the labour force leading to changes in pension and retirement-related policies. For people with diabetes, understanding how working conditions influence their health and wellbeing is an important step to addressing issues that could compromise their prolonged participation in the labour force. This study examined impact of job-strain on health-related quality of life among people with diabetes. A hundred and twenty-three eligible individuals with diabetes who attended two acute trusts, participated in the study. Diabetes specific quality of life, job characteristics and personal/disease characteristics were measured using questionnaires. Univariate and multivariate statistical analyses were undertaken using SPSS version-22. Over a sixth (17.4%) of participants reported poor quality of life. Marital/co-habitation status, type of diabetes and presence of other long-term conditions were associated with quality of life. High deprivation levels was associated with poor quality of life but there was no association between deprivation levels and participants’ perception of the impact of diabetes on their quality of life. High psychological job-demands and physical job-demands were each associated with poor quality of life. High physical and psychological job-demands are potentially detrimental to quality of life in people with diabetes. Adjustments in working conditions could prove crucial in improving quality of life of employees with diabetes

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Design and characterization of the SPT-3G receiver

    Get PDF
    The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, low-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date

    Impact of electrical contacts design and materials on the stability of Ti superconducting transition shape

    Get PDF
    The South Pole Telescope SPT-3G camera utilizes Ti/Au transition edge sensors (TESs). A key requirement for these sensors is reproducibility and long-term stability of the superconducting (SC) transitions. Here, we discuss the impact of electrical contacts design and materials on the shape of the SC transitions. Using scanning electron microscope, atomic force microscope, and optical differential interference contrast microscopy, we observed the presence of unexpected defects of morphological nature on the titanium surface and their evolution in time in proximity to Nb contacts. We found direct correlation between the variations of the morphology and the SC transition shape. Experiments with different diffusion barriers between TES and Nb leads were performed to clarify the origin of this problem. We have demonstrated that the reproducibility of superconducting transitions can be significantly improved by preventing diffusion processes in the TES–leads contact areas

    Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model

    Get PDF
    The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5× expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    Regulation of L-type Voltage Gated Calcium Channel CACNA1S in Macrophages upon Mycobacterium tuberculosis Infection.

    No full text
    We demonstrated earlier the inhibitory role played by Voltage Gated Calcium Channels (VGCCs) in regulating Mycobacterium tuberculosis (M. tb) survival and pathogenesis. In this report, we investigated mechanisms and key players that regulate the surface expression of VGCC-CACNA1S by Rv2463 and M. tb infection in macrophages. Our earlier work identified Rv2463 to be expressed at early times post infection in macrophages that induced suppressor responses to dendritic cells and macrophages. Our results in this study demonstrate a role of MyD88 independent TLR pathway in mediating CACNA1S expression. Dissecting the role for second messengers, we show that calcium homeostasis plays a key role in CACNA1S expression during M. tb infection. Using siRNAs against molecular sensors of calcium regulation, we show an involvement of ER associated Stromal Interaction Molecules 1 and 2 (STIM1 and STIM2), and transcription factor pCREB, towards CACNA1S expression that also involved the MyD88 independent pathway. Interestingly, reactive oxygen species played a negative role in M. tb mediated CACNA1S expression. Further, a cross-regulation of ROS and pCREB was noted that governed CACNA1S expression. Characterizing the mechanisms governing CACNA1S expression would improve our understanding of the regulation of VGCC expression and its role in M. tb pathogenesis during M. tb infection
    • 

    corecore