35 research outputs found

    Eating disorders in young patients with neurofibromatosis type 1

    Get PDF
    Aim: We describe the association of neurofibromatosis type 1 (NF1) and feeding and eating disorders (FED) in five patients admitted to our third level centre for both FED and NF1. Methods: Case series of five adolescent females with NF1 treated for FED. Results: We collected data from five patients with NF1 aged between 14 and 22 years, all females. The onset of eating disorder symptoms occurred between 13 and 19 years of age and was characterised by food intake restriction, associated with physical hyperactivity in three out of five cases. One patient also reported self-injurious acts and episodic binges. Patients received diagnoses of anorexia nervosa (AN, n = 2), atypical AN (n = 1), bulimia nervosa (n = 1), unspecified feeding and eating disorder (n = 1). Conclusion: The current literature reports a single case of an adult with NF1 and comorbid AN, focusing on the dermatological features of NF1. Our article describes a case series of five patients in developmental age affected by NF1 and FED. Clinical and psychological features of NF1 may play a role in the pathogenesis of FED when these two conditions co-occur. The dermatological alterations of NF1 may contribute to body image distortion that characterises AN. Further research is required to systematically screen populations of patients with NF1 for the presence of FED

    I disturbi del comportamento alimentare (DCA): riflessioni e problematiche

    Get PDF
    Eating disorders (ED) are an important cause of physical and psychosocial morbidity in adolescents and young adults, characterized by aberrant patterns of eating behavior and weight regulation and by disturbances in attitudes towards weight and perception of body shape. This article, through the description of a clinical case, focuses on the complexities of clinical management and on the importance of an integrated approach

    VNS in drug resistant epilepsy: preliminary report on a small group of patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1997 Vagus Nerve Stimulation (VNS) received approval from the US Food and Drug Administration (FDA) as an adjunctive therapy in the treatment of medically intractable partial epilepsy in people aged 12 years and older who are ineligible for resective epilepsy surgery. Although the exact mechanisms of action are unknown, the use of VNS with children has increased, including those younger than 12 years of age, or those with generalized epilepsy.</p> <p>Methods</p> <p>We describe the outcome for the first group of nine patients, aged 8-28 years, who had pharmaco-resistant epilepsy and were treated with VNS. During the follow up, we gradually and slowly increased the parameters of the stimulation in order to assess the efficacy of VNS even at parameters which would usually be considered "non-therapeutic", along with possible side effects and changes in quality of life.</p> <p>Results</p> <p>At the last follow, up 1 patient was "seizures free", 3 were "very good responders", 3 were "good responders" and 2 were "non responders". We obtained an initial seizure reduction with low stimulation parameters, the highest current reached being 2.00 mA. This observation supports the possibility that, for younger patients, lower stimulation intensities than those commonly used in clinical practice for adults can be therapeutic. We also wanted to underline the reduction in seizure frequency (~91,7%) and the reduction in seizure duration (> 50%) in the patients affected by drug-resistant absence epilepsy. Adverse effects were mild, tolerable and, in most of cases, easily resolved by adjusting the stimulation parameters. Hoarseness of voice was the most frequent side effect. The improvements in the quality of life are relevant and seem to be independent of the VNS effect in controlling seizures.</p> <p>Conclusions</p> <p>Our small experience seems to confirm the efficacy and safety of VNS in drug resistant partial and generalized epilepsy in developing age groups.</p

    Secretome protein signature of human pancreatic cancer stem-like cells

    Get PDF
    Emerging research has demonstrated that pancreatic ductal adenocarcinoma (PDAC) contains a sub-population of cancer stem cells (CSCs) characterized by self-renewal, anchorage-independent-growth, long-term proliferation and chemoresistance. The secretome analysis of pancreatic CSCs has not yet been performed, although it may provide insight into tumour/microenvironment interactions and intracellular processes, as well as to identify potential biomarkers. To characterize the secreted proteins of pancreatic CSCs, we performed an iTRAQ-based proteomic analysis to compare the secretomes of Panc1 cancer stem-like cells (Panc1 CSCs) and parental cell line. A total of 72 proteins were found up-/down-regulated in the conditioned medium of Panc1 CSCs. The pathway analysis revealed modulation of vital physiological pathways including glycolysis, gluconeogenesis and pentose phosphate. Through ELISA immunoassays we analysed the presence of the three proteins most highly secreted by Panc1 CSCs (ceruloplasmin, galectin-3, and MARCKS) in sera of PDAC patient. ROC curve analysis suggests ceruloplasmin as promising marker for patients negative for CA19-9.Overall, our study provides a systemic secretome analysis of pancreatic CSCs revealing a number of secreted proteins which participate in pathological conditions including cancer differentiation, invasion and metastasis. They may serve as a valuable pool of proteins from which biomarkers and therapeutic targets can be identified. Biological significance: The secretome of CSCs is a rich reservoir of biomarkers of cancer progression and molecular therapeutic targets, and thus is a topic of great interest for cancer research. The secretome analysis of pancreatic CSCs has not yet been performed. Recently, our group has demonstrated that Panc-CSCs isolated from parental cell line by using the CSC selective medium, represent a model of great importance to deepen the understanding of the biology of pancreatic adenocarcinoma. To our knowledge, this is the first proteomic study of pancreatic CSC secretome. We performed an iTRAQ-based analysis to compare the secretomes of Panc1 CSCs and Panc1 parental cell line and identified a total of 43 proteins secreted at higher level by pancreatic cancer stem cells. We found modulation of different vital physiological pathways (such as glycolysis and gluconeogenesis, pentose phosphate pathway) and the involvement of CSC secreted proteins (for example 72 kDa type IV collagenase, galectin-3, alpha-actinin-4, and MARCKS) in pathological conditions including cancer differentiation, invasion and metastasis. By ELISA verification we found that MARCKS and ceruloplasmin discriminate between controls and PDAC patients; in addition ROC curve analyses indicate that MARCKS does not have diagnostic accuracy, while ceruloplasmin could be a promising marker only for patients negative for CA19-9.We think that the findings reported in our manuscript advance the understanding of the pathways implicated in tumourigenesis, metastasis and chemoresistance of pancreatic cancer, and also identify a pool of proteins from which novel candidate diagnostic and therapeutic biomarkers could be discovered

    Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells.

    Get PDF
    Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC

    Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi‑directionally convert into cancer stem cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed when metastatic events have occurred. Cancer stem cells (CSCs) play an important role in tumor initiation, metastasis, chemoresistance and relapse. A growing number of studies have suggested that CSCs exist in a dynamic equilibrium with more differentiated cancer cells via a bi‑directional regeneration that is dependent on the environmental stimuli. In this investigation, we obtain, by using a selective medium, PDAC CSCs from five out of nine PDAC cell lines, endowed with different tumorsphere‑forming ability. PDAC CSCs were generally more resistant to the action of five anticancer drugs than parental cell lines and were characterized by an increased expression of EpCAM and CD44v6, typical stem cell surface markers, and a decreased expression of E‑cadherin, the main marker of the epithelial state. PDAC CSCs were able to re‑differentiate into parental cells once cultured in parental growth condition, as demonstrated by re‑acquisition of the epithelial morphology, the decreased expression levels of EpCAM and CD44v6 and the increased sensitivity to anticancer drugs. Finally, PDAC CSCs injected into nude mice developed a larger subcutaneous tumor mass and showed a higher metastatic activity compared to parental cells. The present study demonstrates the ability to obtain CSCs from several PDAC cell lines and that these cells are differentially resistant to various anticancer agents. This variability renders them a model of great importance to deeply understand pancreatic adenocarcinoma biology, to discover new biomarkers and to screen new therapeutic compounds

    Progressively de-differentiated pancreatic cancer cells shift from glycolysis to oxidative metabolism and gain a quiescent stem state

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is typically characterized by high chemoresistance and metastatic spread, features mainly attributable to cancer stem cells (CSCs). It is of central interest the characterization of CSCs and, in particular, the study of their metabolic features in order to selectively identify their peculiarities for an efficient therapeutic approach. In this study, CSCs have been obtained by culturing different PDAC cell lines with a specific growth medium. Cells were characterized for the typical stem/mesenchymal properties at short-, medium-, and long-term culture. Metabolomics, proteomics, analysis of oxygen consumption rate in live cells, and the effect of the inhibition of lactate transporter on cell proliferation have been performed to delineate the metabolism of CSCs. We show that gradually de-differentiated pancreatic cancer cells progressively increase the expression of both stem and epithelial-to-mesenchymal transition markers, shift their metabolism from a glycolytic to an oxidative one, and lastly gain a quiescent state. These quiescent stem cells are characterized by high chemo-resistance, clonogenic ability, and metastatic potential. Re-differentiation reverts these features, re-activating their proliferative capacity and glycolytic metabolism, which generally correlates with high aggressiveness. These observations add an important piece of knowledge to the comprehension of the biology of CSCs, whose metabolic plasticity could be exploited for the generation of promising and selective therapeutic approaches for PDAC patients

    Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways

    Get PDF
    Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins. Pathway analysis revealed activation of glycolysis, the pentose phosphate pathway, the pyruvate-malate cycle, and lipid metabolism as well as downregulation of the Krebs cycle, the splicesome and non-homologous end joining. These findings were supported by metabolomics and immunoblotting analysis. It was also found that inhibition of fatty acid synthase by cerulenin and of mevalonate pathways by atorvastatin have a greater anti-proliferative effect on cancer stem cells than parental cells. Taken together, these results clarify some important aspects of the metabolic network signature of pancreatic cancer stem cells, shedding light on key and novel therapeutic targets and suggesting that fatty acid synthesis and mevalonate pathways play a key role in ensuring their viability

    GIARPS: the unique VIS-NIR high precision radial velocity facility in this world

    Get PDF
    GIARPS (GIAno & haRPS) is a project devoted to have on the same focal station of the Telescopio Nazionale Galileo (TNG) both the high resolution spectrographs HARPS-N (VIS) and GIANO (NIR) working simultaneously. This could be considered the first and unique worldwide instrument providing cross-dispersed echelle spectroscopy at a high resolution (R=115,000 in the visual and R=50,000 in the IR) and over in a wide spectral range (0.383 - 2.45 micron) in a single exposure. The science case is very broad, given the versatility of such an instrument and the large wavelength range. A number of outstanding science cases encompassing mainly extra-solar planet science starting from rocky planet search and hot Jupiters, atmosphere characterization can be considered. Furthermore both instrument can measure high precision radial velocity by means the simultaneous thorium technique (HARPS - N) and absorbing cell technique (GIANO) in a single exposure. Other science cases are also possible. Young stars and proto-planetary disks, cool stars and stellar populations, moving minor bodies in the solar system, bursting young stellar objects, cataclysmic variables and X-ray binary transients in our Galaxy, supernovae up to gamma-ray bursts in the very distant and young Universe, can take advantage of the unicity of this facility both in terms of contemporaneous wide wavelength range and high resolution spectroscopy.Comment: 8 pages, 5 figures, SPIE Conference Proceeding

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    corecore