24 research outputs found

    Hydrodynamics of Monolayer Domains at the Air-Water Interface

    Full text link
    Molecules at the air-water interface often form inhomogeneous layers in which domains of different densities are separated by sharp interfaces. Complex interfacial pattern formation may occur through the competition of short- and long-range forces acting within the monolayer. The overdamped hydrodynamics of such interfacial motion is treated here in a general manner that accounts for dissipation both within the monolayer and in the subfluid. Previous results on the linear stability of interfaces are recovered and extended, and a formulation applicable to the nonlinear regime is developed. A simplified dynamical law valid when dissipation in the monolayer itself is negligible is also proposed. Throughout the analysis, special attention is paid to the dependence of the dynamical behavior on a characteristic length scale set by the ratio of the viscosities in the monolayer and in the subphase.Comment: 12 pages, RevTeX, 4 ps figures, accepted in Physics of Fluids

    Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field

    Full text link
    The behavior of a magnetic fluid drop lying on a solid horizontal surface and surrounded by a nonmagnetic liquid under the action of a uniform magnetic field which is rotating in a vertical plane with low frequency (of the order of 1 Hz) has been investigated experimentally. Shape deformation and translatory motion of the drop were observed and studied. The drop translation velocity for different field amplitudes and field frequencies has been measured.Comment: 9 pages, 4 figure

    Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls of arbitrary orientation

    Full text link
    A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons of the decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular, a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields and layer thicknesses.Comment: 8 pages, 6 figures, RevTex

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author

    Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures

    Get PDF
    In the present work we investigated the effect of selective stimulation of non-desensitizing 03B1-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the intracellular processes leading to hippocampal neuronal death and production of reactive oxygen species (ROS). Activation of AMPA receptors in the presence of cyclothiazide (CYZ), a blocker of AMPA receptor desensitization, resulted in the death of approximately 25% of neurones, which was prevented by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), an AMPA-preferring receptor antagonist. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) protected the neurones from necrotic death induced by AMPA or NMDA receptor activation. Neurodegeneration caused by selective activation of non-desensitizing AMPA receptors, in the presence of AMPA, CYZ and MK-801, significantly decreased the number of Co2+-positive neurones, used as a cytochemical marker of Ca2+-permeable AMPA receptors, but maintained intracellular ATP/ADP. The AMPA-mediated apoptotic cell death involved mitochondrial cytochrome c release and the activation of caspases-1 and -3, which was prevented by NBQX. Interestingly, although selective activation of AMPA receptors was not associated with production of intracellular peroxides, a moderate increase in superoxide production was observed upon exposure to antimycin A (AA). Furthermore, increased activity of Mn- superoxide dismutase (SOD) was observed on selective activation of non-desensitizing AMPA receptors. Taken together, these data make important contributions to the elucidation of the downstream pathways activated in AMPA receptor-mediated excitotoxicity in cultured rat hippocampal neurones
    corecore