772 research outputs found

    Ground-state properties and superfluidity of two- and quasi two-dimensional solid 4He

    Full text link
    In a recent study we have reported a new type of trial wave function symmetric under the exchange of particles and which is able to describe a supersolid phase. In this work, we use the diffusion Monte Carlo method and this model wave function to study the properties of solid 4He in two- and quasi two-dimensional geometries. In the purely two-dimensional case, we obtain results for the total ground-state energy and freezing and melting densities which are in good agreement with previous exact Monte Carlo calculations performed with a slightly different interatomic potential model. We calculate the value of the zero-temperature superfluid fraction \rho_{s} / \rho of 2D solid 4He and find that it is negligible in all the considered cases, similarly to what is obtained in the perfect (free of defects) three-dimensional crystal using the same computational approach. Interestingly, by allowing the atoms to move locally in the perpendicular direction to the plane where they are confined to zero-point oscillations (quasi two-dimensional crystal) we observe the emergence of a finite superfluid density that coexists with the periodicity of the system.Comment: 16 pages, 8 figure

    Constraints on the phase diagram of molybdenum from first-principles free-energy calculations

    Full text link
    We use first-principles techniques to re-examine the suggestion that transitions seen in high-P experiments on Mo are solid-solid transitions from the bcc structure to either the fcc or hcp structures. We confirm that in the harmonic approximation the free energies of fcc and hcp structures become lower than that of bcc at P > 325 GPa and T below the melting curve, as reported recently. However, we show that if anharmonic effects are fully included this is no longer true. We calculate fully anharmonic free energies of high-T crystal phases by integration of the thermal average stress with respect to strain as structures are deformed into each other, and also by thermodynamic integration from harmonic reference systems to the fully anharmonic system. Our finding that fcc is thermodynamically less stable than bcc in the relevant high-P/high-T region is supported by comparing the melting curves of the two structures calculated using the first-principles reference-coexistence technique. We present first-principles simulations based on the recently proposed Z method which also support the stability of bcc over fcc.Comment: 33 pages, 10 figure

    Quantum Phase Transition with a Simple Variational Ansatz

    Get PDF
    We study the zero-temperature quantum phase transition between liquid and hcp solid helium-4. We use the variational method with a simple yet exchange-symmetric and fully explicit wavefunction. It is found that the optimized wavefunction undergoes spontaneous symmetry breaking and describes the quantum solidification of helium at 22 atm. The explicit form of the wavefunction allows to consider various contributions to the phase transition. We find that the employed wavefunction is an excellent candidate for describing both a first-order quantum phase transition and the ground state of a Bose solid

    Effect of organic loading rate on the production of Polyhydroxyalkanoates from sewage sludge

    Get PDF
    The aim of this work was to study the effect of organic loading rate on the production of Polyhydroxyalkanoates (PHA) from sewage sludge. Synthesis of PHA using sewage sludge as platform was achieved in this work. Three pilot-scale selection-sequencing batch reactors (S-SBR) were used for obtaining a culture able to accumulate PHA following a strategy of aerobic dynamic feeding (ADF) at different volumetric organic-loading-rate (vOLR): 1.3, 1.8 and 0.8 g COD L-1 d-1 for S-SBR 1, S-SBR 2 and S-SBR 3, respectively. Decreasing the vOLR enhanced the general performance of the process as for organic matter removal (from 99.2% Â± 0.3% in S-SBR-3 to 92 Â± 2 in S-SBR-2) while the opposite trend was recorded for PHA production (6.0 PHA % w/w in S-SBR-3 vs 13.7 PHA % w/w in S-SBR-2 at the end of the feast phase). Furthermore, indirect and direct emissions, as N2O, were evaluated during the process for the first time. Finally, three accumulation tests were performed achieving 24% w/w

    The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca

    Get PDF
    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal activities very close to those previously reported for vegetative cells. Identification of three lipopeptide antibiotics, surfactin, fengycin, and iturin A or bacillomycin, in butanolic extracts from cell-free culture filtrates of these B. subtilis strains pointed out that antibiosis could be a major factor involved in their biocontrol ability. The strong inhibitory effect of purified lipopeptide fractions corresponding to bacillomycin, fengycin, and iturin A on P. fusca conidia germination, as well as the in situ detection of these lipopeptides in bacterial-treated melon leaves, provided interesting evidence of their putative involvement in the antagonistic activity. Those results were definitively supported by site-directed mutagenesis analysis, targeted to suppress the biosynthesis of the different lipopeptides. Taken together, our data have allowed us to conclude that the iturin and fengycin families of lipopeptides have a major role in the antagonism of B. subtilis toward P. fusca.

    The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca

    Get PDF
    Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal activities very close to those previously reported for vegetative cells. Identification of three lipopeptide antibiotics, surfactin, fengycin, and iturin A or bacillomycin, in butanolic extracts from cell-free culture filtrates of these B. subtilis strains pointed out that antibiosis could be a major factor involved in their biocontrol ability. The strong inhibitory effect of purified lipopeptide fractions corresponding to bacillomycin, fengycin, and iturin A on P. fusca conidia germination, as well as the in situ detection of these lipopeptides in bacterial-treated melon leaves, provided interesting evidence of their putative involvement in the antagonistic activity. Those results were definitively supported by site-directed mutagenesis analysis, targeted to suppress the biosynthesis of the different lipopeptides. Taken together, our data have allowed us to conclude that the iturin and fengycin families of lipopeptides have a major role in the antagonism of B. subtilis toward P. fusca.

    Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey

    Get PDF
    "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {VOL 52, ISS 1, (February 2019)} https://dl.acm.org/doi/10.1145/3301283"[EN] The unabated increase in the complexity of the hardware and software components of modern embedded real-time systems has given momentum to a host of research in the use of probabilistic and statistical techniques for timing analysis. In the last few years, that front of investigation has yielded a body of scientific literature vast enough to warrant some comprehensive taxonomy of motivations, strategies of application, and directions of research. This survey addresses this very need, singling out the principal techniques in the state of the art of timing analysis that employ probabilistic reasoning at some level, building a taxonomy of them, discussing their relative merit and limitations, and the relations among them. In addition to offering a comprehensive foundation to savvy probabilistic timing analysis, this article also identifies the key challenges to be addressed to consolidate the scientific soundness and industrial viability of this emerging field.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773), and the HiPEAC Network of Excellence. Jaume Abella was partially supported by the Ministry of Economy and Competitiveness under a Ramon y Cajal postdoctoral fellowship (RYC-2013-14717). Enrico Mezzetti has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporación postdoctoral fellowship No. IJCI-2016-27396.Cazorla, FJ.; Kosmidis, L.; Mezzetti, E.; Hernåndez Luz, C.; Abella, J.; Vardanega, T. (2019). Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. ACM Computing Surveys. 52(1):1-35. https://doi.org/10.1145/3301283S13552
    • 

    corecore