
Probabilistic Worst-Case Timing Analysis:

Taxonomy and Comprehensive Survey

Francisco J. Cazorla†, Leonidas Kosmidis†, Enrico Mezzetti†,
Carles Hernandez†, Jaume Abella†, Tullio Vardanega‡

†Barcelona Supercomputing Center (BSC)
‡University of Padova

Abstract

The unabated increase in the complexity of the hardware and software
components of modern embedded real-time systems has given momentum
to a host of research in the use of probabilistic and statistical techniques
for timing analysis. In the last few years, that front of investigation has
yielded a body of scientific literature vast enough to warrant some com-
prehensive taxonomy of motivations, strategies of application, and direc-
tions of research. This survey addresses this very need, singling out the
principal techniques in the state of the art of timing analysis that em-
ploy probabilistic reasoning at some level, building a taxonomy of them,
discussing their relative merit and limitations, and the relations among
them. In addition to offering a comprehensive foundation to savvy proba-
bilistic timing analysis, this paper also identifies the key challenges to be
addressed to consolidate the scientific soundness and industrial viability
of this emerging field.

1 Introduction

Embedded real-time systems are increasingly interwoven in the control of criti-
cal elements of human life, including the health, security and safety concerns of
it [42]. The dependence of the latter on the former rests on the ability of the
system software to carry out the assigned critical control functions effectively,
in conformance with the applicable safety regulations. As part of that trend,
software has become the main value-added vector for most embedded real-time
products. In consequence of that, the nature of the critical functionalities im-
plemented in software has changed from rather confined procedures to large,
articulate, diverse and complex algorithms that oversee multiple information
flows between vast arrays of sensors and actuators. In the automotive domain,
for instance, the quantity of software embedded in cars already exceeds 100
millions lines of code [29], with performance requirements predicted to rise by
two orders of magnitude by 2024 [17]. Similar trends occur in other application
domains, cf. e.g. [43] for space.

At the processor level, the use of more advanced acceleration features is
the only practical means to sustain the ever-increasing demand of guaranteed

1

© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive 
version was published in ACM Computing Surveys {Volume 52 Issue 1, February 2019} https://dl.acm.org/citation.cfm?doid=3309872.3301283



performance put forward by value-added application software. Not surpris-
ingly, this trend has caused a sweeping transition from simple 8- and 16-bit
micro-controllers to more complex processors in new-generation systems for the
aerospace, automotive and rail domains. For example, existing 32-bit proces-
sors in current automotive subsystems embed accelerator-based multicore units,
like in the NVIDIA DrivePX [4], RENESAS R-Car H3 [3], QUALCOMM Snap-
dragon 820 [2], and Intel Go [61].

Timing is one of the main non-functional concerns in embedded real-time
systems. Timing analysis aims to ascertain whether software programs execute
within the bounds assigned to them at specification, which normally regard
duration (aka worst-case execution time, WCET) and completion (aka response
time). The former type of analysis seeks to upper bound the execution duration
of individual software units considered in isolation. The latter assesses whether
a feasible (concurrent or parallel) compositional schedule of those software units
exists that allows them to complete their work in a timely manner, i.e. within
assigned deadlines that respond to high-level needs of the system’s functionality,
after factoring in the impact of the interference among them. Arguably, the
hardest challenge of WCET analysis is to comprehend the extent of execution-
time variability (i.e., jitter) that software programs may exhibit when run on
their target platform.

• For simple platforms, the sources of jitter (i.e., the features that contribute
to the variability of the program’s execution time across runs) are limited
to the software program’s structure and its input data. The former reflects
how multiple identical runs of the program may take different durations
depending on the execution path taken by the program. The latter reflects
how the input data affect programs execution, for instance determining
the branch taken in the program path or the duration of jittery operations,
e.g., floating point operations.

• As platform complexity increases, new low-level and hard-to-catch sources
of jitter emerge, which include cache utilization, bus occupancy, and par-
allel contention for shared resources in multicores. Those elements may
have a dominant impact on the program’s jitter.

The increase in complexity at software and hardware level has resulted in a
relentless quest for novel timing analysis methods capable of mastering it. The
hardness of that challenge has caused a surge of interest in the use of statistical
and probabilistic techniques, owing to their ability to reason on (black-box)
observations, which are orders of magnitude easier to obtain than (white-box)
knowledge on the relevant internals of an execution. A wide range of works
exist that extends from tailoring statistical techniques used in other domains
to fit the timing analysis problem, to dressing hardware to better match the
premises of probabilistically analysable behaviour. Probabilistic techniques have
been explored in virtually all aspects and layers of the system overall, including
application programs, the operating system, the compilation system and its
linker, the processor hardware, and, of course, the very fabric of the timing
analysis itself.

While there is growing evidence that probabilistic and statistical techniques
may help alleviate some of the limitations that hamper traditional timing anal-
ysis solutions, the proliferation of works that have appeared in the last few years

2



is making it hard for interested individuals to understand the forming landscape
of research in that area. Arguably, one pressing need for all observers of the
present state of the art is to appreciate how those novel techniques relate to one
another, to comprehend the assumptions on which they build, and to determine
how they contribute to earning industrial acceptance for probabilistic-based
timing analysis.

This is what this paper aims to contribute:

1. A comprehensive critical taxonomy of the existing works on probabilistic
timing analysis, clarifying which specific problems they aim to attack, how
probabilistic and statistical techniques are exploited (thereby exposing the
limitations of each proposal), and where different proposals overlap or
complement one another.

2. A scrutiny of the assumptions that each surveyed technique makes on
the underlying execution platform and the application timing behaviour,
in the intent of clearing the ground for well-founded use of probabilistic
analysis.

The remainder of this paper is organized as follows: Section 2 presents the
motivation and intuitions behind the application of probabilistic approaches to
the timing analysis problem, and proposes a comprehensive taxonomy of the
relevant state of the art. Sections from 3 to 8 survey the principal lines of
work in that taxonomy. Section 9 concludes by discussing the overall status of
probabilistic timing analysis, for theory and technology, and its readiness for
industrial use.

2 Probabilistic WCET Analyses

2.1 Setting the Scene

Deriving high-quality WCET estimates is universally accepted as a challenging
task [112]. When facing the WCET problem, industrial practitioners screen the
state of the art of solution offerings, to determine which approach best meets
their needs and obligations. Ultimately, industrial choice seeks to balance the
cost-effectiveness of the solution and the quality of the evidence that it can
provide to attain the level of confidence required by the domain prescriptions [9].

Two dominant flavors of timing analysis exist:

• Static methods (STA, in the sequel) seek absolute theoretical rigor, at the
cost of complexity in use and pessimism in the results that may inordi-
nately increase as system design becomes more complex. The quality of
their results strictly depends on the availability of accurate and sufficient
information on the hardware and software internals (and in particular on
their timing behaviour) of the system to analyze. For this reason, [50]
notes that mathematical rigor per se, while obviously beneficial, is insuf-
ficient to assure that the provided estimate always upper-bounds actual
execution times.

• Measurement-based methods (MBTA, in the sequel) follow less rigorous
approaches (a vulnerability that must be addressed with utmost care), for

3



much lower cost of use. Those methods seek to provide empirical evidence
that the worst-case conditions of interest have been exercised or closely
approximated in the measurement observations.

MBTA is the most commonly used technique in industry, owing to its low
cost-benefit ratio. Evidence exists that measurements can be also used for
functions with the highest criticality level, e.g. DAL-A in avionics [75]. Yet,
STA is the preferred solution for the software functions at the highest criticality
levels. To contain the costs of qualification (or certification, where required),
those functions typically execute on simple processors and represent a modest
fraction of the value-added software in the system overall [47].

The advent of high-performance hardware presents STA and MBTA with
hard challenges. STA is especially affected in its quest for accurate timing
models to compute the cost of individual processor instructions and the basic
blocks of software programs. The presence of intellectual property restrictions
and the vastness of hardware documentation increases the risk of considering
inaccurate or incomplete timing information [9], ultimately causing STA users
to depend on measurements and reverse engineering for filling the consequent
information gaps [93]. MBTA suffers too, as further sources of jitter appear
in hardware resources (e.g., bus occupancy, cache placement) that are difficult
to study or observe in isolation, for the lack of sufficient hardware monitors or
specification information.

Another problem with high-performance computing systems is that, no mat-
ter how deterministic the individual hardware components may be, the fabric
of their interaction tends to grow exceedingly complex, causing an explosion in
the state space on which the program’s timing behaviour depends together with
a potentially large increase in the overall jitter. The former consequence makes
it difficult to determine the worst-case scenario; the latter increases pessimism.

The application of probabilistic reasoning to timing analysis aims at miti-
gating some of the limitations of the existing techniques.

• The probabilistic variant of MBTA, aka measurement-based probabilistic
timing analysis (MBPTA), aims at easing the construction of qualification-
worthy arguments that the worst-case scenarios of interest have been cap-
tured in observation runs, in a manner that lives up with the increase in
hardware complexity.

• The probabilistic variant of STA (SPTA) aims at reducing the pessimism
incurred by traditional WCET analysis, while also reducing the informa-
tion need. SPTA builds on the notion of execution-time profile (ETP)
that describes the probabilistic execution-time distribution of individual
instructions. ETPs are an attribute of static instructions at binary level
as they are assumed to upper-bound all of their (dynamic) instances (that
is, the executions of that instruction during program runs).

The application of either variant of PTA requires changes to the system for
it to conform with the analysis assumptions. The state of the art includes PTA
works that address (i) systems where no hardware or software changes had been
applied (COTS), (ii) systems that employed COTS hardware but used software
modifications transparent to the application (SWRand), and (iii) systems whose
processors had been modified in selected components (HWRand).

4



2.2 The Wisdom of Probabilistic Reasoning on WCET

PTA requires to cease seeking single-valued WCET estimates, as unique defini-
tive upper-bounds to all instances of execution-time duration, to concentrate
instead on a distribution function, aka probabilistic WCET (pWCET), thus
modelling the maximum probability with which a WCET bound can be ex-
ceeded. PTA is a broad paradigm, which encompasses all timing analysis meth-
ods that yield pWCET estimates regardless of the specific prerequisites that
each such method may impose on the characteristics of the execution platform
and its modelling, the measurement collection protocol, the existence and the
modelling of dependencies, and the degree of knowledge or control required from
the user. To put the PTA paradigm shift in prospective, one should appreciate
that the assurance attached to the single-valued product of STA rests on the
quality of the information passed to it (e.g., processor model, instruction timing,
flow facts), which however cannot be quantified in the general case [50].

In acknowledgment of the lack of absolute certainty, no critical real-time
embedded system is conceivably designed assuming absence of timing failures
(i.e., task overruns). Instead, systems are designed so that no such event should
ever cause the system to enter an unsafe state: If it did, that would be a
single point of failure, consequent to inadequate safety-case design. Domain-
specific standards require system engineering to encompass a safety process that
sanctions the strategy required to mitigate the system-level risk of hardware or
software malfunctions. Various mechanisms (e.g., replication, online monitoring,
watchdog) are then deployed to detect and react to undesired situations, in
accord with the criticality of the system part of interest.

Interestingly, probabilistic reasoning is habitually used in the design of elec-
tronic components [13], to model the appearance of certain types of hardware
faults such as, for instance, random hardware faults due to particle strikes from
the outer Space or other forms of electromagnetic interference. Probabilistic
reasoning on WCET bounds matches that reality quite naturally.

2.3 A Taxonomy of PTA Works

The initial works on PTA, which date back to the early 2000’s, reason the-
oretically on the problem of probabilistically modelling the timing behaviour,
without discussing the mathematical means to derive pWCET estimates and the
computing platforms on which PTA could be safely applied. About a decade
later, that research area boomed, under the spin of a series of EU-funded projects
and a constellation of industrial collaborations born around them. In the last
few years, the number of works that address PTA in various guises has risen
dramatically, making it difficult to discern the relation that they have with one
another. In that vastness, several claims are made that seem to discord. Overall,
the current landscape of research in that field has developed into a haphazard
territory, ungainly for scientific investigators or industrial practitioners.

This section attempts to categorize all the PTA works known to date. Works
with similar goals fall in the same category, although some works span multiple
categories as they address several problems at once. Before drawing the tax-
onomy, we note that probabilistic and statistical reasoning take different roles
in the application of PTA: probabilistic analysis reasons a-priori on the timing
behaviour that the program will exhibit during operation; statistical analysis

5



Table 1: Terms and acronyms used throughout this paper.

Term Definition

MBPTA Measurement-Based Timing Analysis
PTA MBPTA and SPTA
EVT Extreme Value Theory
PoT Peak Over Thresholds
GEV Generalized Extreme Value Theory
COTS Commercial Off the Shelf
SWRand COTS HW w/ Software Randomization
ATD/ATS Analysis Time Distribution/Sample
SPTA Static Probabilistic Timing Analysis
ETP Execution-Time Profile
i.i.d. Independent and Identical Distribution
BM Block Maxima
GPD Generalized Pareto Distribution
HWRand Time-randomized Hardware
pWCET probabilistic WCET
OTD Operation Time Distribution

is performed a-posteriori on a set of execution-time measurements to check
whether the hypothesis made on the program’s probabilistic timing behaviour
cannot be rejected. The union of those techniques (applied either to SPTA or
MBPTA) is collectively referred to as PTA. Table 1 lists the main terms and
acronyms used in this paper.

In this paper, we first classify the surveyed works according to whether they
pertain to MBPTA or SPTA, and then to each of the related sub-problems. Sub-
sequently, we single out further works of transversal interest. Figure 1 provides
a pictorial representation of the proposed taxonomy.

Figure 1: The principal categories in our proposed taxonomy.

The MBPTA category, which we survey in Section 3, further breaks down
as follows.

• Probabilistic Modeling (Section 3.2) seeks a-priori guarantees that the
time-randomized resources used in the execution platform are apt to yield
a timing behaviour that allows probabilistic reasoning.

• Statistical Modeling (Section 3.3) discusses how to ascertain the statistical
properties of the execution-time distribution of programs obtained from its
runs on the target platform. This represents the a-posteriori counterpart
of probabilistic modeling.

• Application Procedure (Section 3.4). The works in this category present
MBPTA as an orderly set of actions, and illustrate how to apply them.

6



• Representativeness (Section 4) aims at providing evidence that the execution-
time observations captured for a given software unit during analysis are
representative of the distribution of program’s execution times during op-
eration. To reflect their importance, we survey works in this category in
Section 4, outside of Section 3’s internal hierarchy.

The SPTA category, which we survey in Section 5, further breaks down as
follows (as probabilistic modelling is intrinsic to SPTA, it is not covered as a
separated subcategory).

• Application Procedure (Section 5.2). The works in this category present
the SPTA application process in general and discuss software-related chal-
lenges with it, such as path coverage. This ambit includes the SPTA
correspondent of Probabilistic Modeling assurance, to confirm that the
execution platform offers sufficient randomization to allow probabilistic
reasoning. To date, SPTA research has been shown able to meet this re-
quirement only for processor architectures considerably simpler than those
amenable to MBPTA.

• ETP Sampling Techniques (Section 5.3). SPTA applies the convolution
operator on the ETPs of individual instructions to derive their combined
ETP. The number of elements in ETPs increases exponentially with the
convolutions performed. Works in this category limit the number of points
per ETP while ensuring that the resulting estimates do upper-bound the
original non-sampled ETPs.

• Convolution Speed-up (Section 5.3). The works in this category propose
techniques to reduce the computation overhead entailed by the use of
convolution operators.

Works of transverse concern to MBPTA and SPTA fall in the following
categories.

• Computing Platforms (Section 6). The works in this group discuss the
main requirements on the design of platform’s hardware and software to
which PTA can best apply.

• Timing Analysis in the Presence of (Hardware) Faults (Section 7). These
works address the impact of faulty hardware on program’s execution time,
including its WCET.

Table 2 relates the categories in our PTA taxonomy and the HWRand,
SWRAnd and COTS platform types (cf. Section 2.1) to the coverage of the
corresponding topic in the state of the art.

Table 2: Coverage of the related work for each PTA taxonomy category and
platform type (Legend: X: covered; 7: not studied; (−): not relevant).

MBPTA SPTA Analysis in
Application Probabilistic Statistic Represen- Application Probabilistic ETP Convolution the Presence

Platform Procedure Modelling Modelling tativeness Procedure Modelling Sampling Speed-up of Faults

HWRand X X X X X X X X X
SWRand X X X X 7 7 7 7 -
COTS X - X 7 7 7 7 7 X

7



2.4 Probabilistic Analysis Beyond WCET Estimation

The notion of pWCET has been also explored at higher levels of abstraction,
particularly for scheduling and response time analysis: the work by Burns et
al. [24] is the main reference in this field. However, since our survey focuses on
the use of PTA for pWCET estimation rather than on the use of the obtained
pWCET estimates, e.g., for schedulability analysis, we only briefly touch upon
the latter in this work.

The works on probabilistic scheduling consider tasks whose execution time
follows a probabilistic distribution that can be characterized, without discussing
how such a distribution is derived, which instead is of essence to PTA. Other
works (e.g., [36], [72]) study system-level effects of scheduling, which have bear-
ing on execution time and therefore on pWCET estimates, specifically the cache
evictions that a task may suffer because of preemption. No other system-level
effects have been studied so far in the context of PTA research.

To address the scheduling problem from the PTA perspective, it is not
strictly necessary to create a probabilistic version of it. In fact, instead of
exposing the whole pWCET distribution function to the scheduling or response
time analysis algorithm, one can simply select a single-valued WCET estimate
for each task, at a cut-off probability that meets the safety-case requirements of
the system (e.g., 10−15 per execution), and use standard scheduling approaches
with them.

3 MBPTA

3.1 Introduction

Like any other measurement-based timing analysis method, MBPTA requires
collecting execution time measurements as soon as possible in the system de-
velopment life cycle, thereby avoiding the hazard of costly, late-stage regression
determined by unsatisfactory analysis outcomes. Measurements are normally
taken at the level of individual program units of variable granularity points in
the system hierarchy, as soon as coded, after stubbing their externals. The
challenge is to create analysis scenarios that, by virtue of configuration and
execution procedure, expose the software program to the maximum extent of
variability that may arise during operation, as a result of input received, unit
state, and execution conditions (the latter including the contention incurred
from co-runners on access to shared hardware resources).

The elements to consider to that effect are referred to as sources of jitter
(SoJ). The distinguishing trait of MBPTA is to use analysis-time observations
to derive a probabilistic bound on the program’s execution time that applies to
its behaviour during operation. This ability requires attaining statistical con-
trol on the sources of jitter. Figure 2(a) illustrates this notion by contrasting
the analysis-time distribution (ATD) of the program’s execution time, as deter-
mined from very many observations, commensurate with the degree of assurance
sought, with the operation-time distribution (OTD) that will begin to emerge
after final system integration, too late to serve for WCET analysis. MBPTA
aims at ensuring that an ATD, with the upper-bounding characteristics shown
in Figure 2(a), can be constructed off a small number of selected observation

8



samples (ATS), and then used to derive a pWCET distribution function that
upper-bounds the ATD.

(a) ATD, ATS, OTD and pWCET estimate.

(b) The space covered by MBPTA, inclusive of the representativeness and
statistical concerns that are prerequisite to its application.

Figure 2: The basics of MBPTA.

The MBPTA problem overall can thus be decomposed into two parts:

1. To ensure that the ATD upper-bounds the OTD. This requires assuring
that the analysis-time conditions are no better (for the emergence of the
WCET) than those that can arise during operation. This problem is
usually referred to as representativeness, to signify the preoccupation that
the execution conditions incurred at analysis are representative of those
that may occur at operation.

2. To soundly apply statistical methods so that an affordably small sample
of the ATD (a proper choice of ATS) can be drawn to derive a pWCET
estimate that does upper-bound the ATD (and thus the OTD).

In the literature, the MBPTA denomination has often been used indis-
tinctly to address any application of statistical and probabilistic approaches
to measurement-based timing analysis. This misclassification matches the sta-
tistical part of the MBPTA work flow as understood in this paper, but fails to
capture the relevance of having a well-formed MBPTA process to guarantee a
sound application of it. The latter is a crucial concern to the correct interpreta-
tion of MBPTA. Figure 2(b) provides a pictorial representation of the MBPTA

9



proper process. Accordingly, this survey classifies current MBPTA works into
three areas of concern:

1. Probabilistic and statistical modelling (Section 3.2 and Section 3.3 re-
spectively), where we discuss the works that address the probabilistic and
statistical perspective of the MBPTA process at the high level, without
entering its concrete steps of execution;

2. MBPTA application procedure (Section 3.4), where we review the works
that concentrate on procedural issues, focusing on particular stages of the
MBPTA process;

3. Representativeness (Section 4), which considers the works that study how
to ensure that the platform, for its hardware or software components and
the execution conditions that they allow exploring, guarantees that the
ATD upper-bounds the OTD. The works in this category either address
the program structure (e.g. the coverage of the program’s control-flow
graph) or concentrate on the execution conditions determined by the pro-
cessor hardware.

3.2 Probabilistic Modeling

To apply probabilistic reasoning to the timing of a software system soundly, the
program execution time must have a probabilistically-characterizable behaviour.
The prime means used by MBPTA research to that end, is to inject random-
ization in the program’s timing behaviour. Different means to do so, however,
fare very differently with respect to representativeness: we return to this issue
specifically in Section 4. Probabilistic modelling therefore aims to assure that
the approach followed to inject randomization adequately yields probabilistic
timing behaviour.

MBPTA notably differs from SPTA in the way it addresses probabilistic
modelling. As we shall see in Section 5, the latter requires deriving exact or
upper-bounding probabilities for each time event that is randomized (e.g., a
cache miss). The former may instead follow the design and implementation
prescriptions in [70] to assure that the timing events that affect the program’s
execution-time behaviour have a random nature (and therefore allow probabilis-
tic reasoning on them), so that it does not need to know or compute their actual
probabilities, for they are bound to emerge through statistically-significant ob-
servations.

Overall, MBPTA’s probabilistic modelling requires that randomization means
are deployed to ensure that each execution time resulting from a program run
has a probability of occurrence. MBPTA research has attempted to achieve
this goal by randomizing the timing of individual components [70], by randomly
sorting or picking from measurements [51, 81], by adding random padding to
observed measurement values [78]. Not all randomization means however are
equally capable of providing sufficient representativeness guarantees: the user
shall therefore thoroughly understand the implications of randomization means
on representativeness.

10



3.3 Statistical Modeling

Broadly speaking, when statistical reasoning enters timing analysis approaches,
execution-time observations are sampled according to given criteria, and then
used to fit some probability distribution, which yields the pWCET estimation.

To the best of our knowledge, the vast majority of works in this area have
used Extreme Value Theory (EVT), paralleling the worst-case execution-time
behaviour of a program to an extreme-value probability distribution. A residual
fraction of works have explored other theories such as Copulas [22] or Markov
models [39, 110]. Owing to this dominance, this section concentrates on EVT
and its use for the pWCET estimation problem. It is worth noting that, while
MBPTA is not intrinsically restricted to yielding continuous distributions, the
use of EVT naturally implies delivering them. Conversely, SPTA, albeit not nec-
essarily limited to discrete distributions, often builds on discrete representations
of the execution times and their individual probabilities.

3.3.1 Basics on EVT

EVT is a well-established branch of statistics that models the probability of oc-
currence of extreme events (whether maxima or minima) in a given distribution.
EVT has been traditionally applied to meteorological, hydrological, insurance
and financial problems [37, 5, 45], to predict extreme behaviour or expectations,
such as exceedance probability or return periods.

EVT builds on the Fisher-Tippett-Gnedenko [49] and Pickands-Balkema-
deHaan [97] theorems, which stipulate that the asymptotic tail distribution of
a sample of independent and identically distributed (i.i.d.) random variables
converges to specific families of distributions, known as Generalised Extreme
Value (GEV) and Generalized Pareto Distribution (GPD).

To model the tail (hence the extreme) probability distribution, EVT singles
out the tail values in the input sample of observations. To select those elements
from the sample population and fit them to a (parametric) extreme distribu-
tion, EVT uses one of two methods, namely Block Maxima (BM) or Peak over
Threshold (PoT), briefly reviewed below. Goodness-of-fit tests or other statis-
tical diagnostic tools eventually determine how well the obtained distribution
models the population.

Block Maxima (BM) BM filters out non-tail values by splitting the sample
into smaller blocks of a given size, and then retaining only the maximum value in
each block. EVT then attempts to fit the resulting set of values within the GEV
family of distributions, whose parametric form is shown in Equation 1 [32, 73]
(where 1 + ξ

(
x−µ
σ

)
> 0 must hold), which resolves into a Gumbel, Reversed

Weibull, or Fréchet distribution. The parameters µ, σ and ξ are known as the
location, scale and shape respectively. The shape ξ determines whether the
resulting distribution is a Weibull (aka light or short-tailed), when ξ < 0, or
Gumbel (aka exponential or light-tailed), when ξ = 0, or Fréchet (aka heavy-
tailed), when ξ > 0.

G(x;µ, σ, ξ) =


exp

[
−
(
1 + ξ x−µσ

)−1/ξ]
ξ 6= 0

exp
[
−exp

(
−x−µσ

)]
ξ = 0

(1)

11



Figure 3: Complementary cumulative distribution function for light, exponential
and heavy tail GEV distributions, with ξ = −0.2, ξ = 0 and ξ = 0.2 respectively,
and (µ = 0, σ = 100) for all of them.

Figure 3 illustrates example tail shapes: a Weibull distribution with ξ =
−0.2, which has a steep slope and converges to a maximum value (500 in the
example, not shown in the plot); a Gumbel distribution with ξ = 0, which yields
a relatively short-tailed slope that however remains asymptotic (outside of the
plot); and a Fréchet distribution with ξ = 0.2, which decreases polynomially.

Peak-over-Threshold (PoT) PoT filters out non-tail values by retaining
only the observations that exceed a given threshold. EVT then attempts to
fit the resulting set of values within the GPD family of distributions, Gumbel,
Reversed Weibull, or Pareto, whose parametric form is shown in Equation 2,
where the parameters µ, σ and ξ have a similar meaning as in the GEV formu-
lation (in fact, ξ is identical), and x > µ. The GPD distribution admits also a
two-parameter formulation.

H(x;µ, σ, ξ) =

 1−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
ξ 6= 0

1− exp
(
−x−µσ

)
ξ = 0

(2)

[32] notes that a strong correlation exists between GEV and GPD: for the
same ξ and similar values for µ and σ, GPD and GEV result in the same
distribution.

3.3.2 Modeling Extreme Timing Behaviour with EVT

In spite of the remoteness of its original domains of application to the tim-
ing analysis problem, EVT has emerged as an apt tool to derive trustworthy
pWCET estimates. Numerous studies and considerable effort have contributed
to yielding a sound adaptation of it. From the statistical modelling perspec-
tive, among the steps that precede the application of EVT, the state of the art
literature distinguishes (1) the approach used for the derivation of GEV/GPD
parameters, (2) the filtering of tail values from the sample, and (3) the evalua-
tion of the quality of fit.

Edgar and Burns first proposed using EVT – the Gumbel distribution in
particular – for pWCET estimation [44]. Their work uses a notion of thresh-
old, referred to as “confidence level”, to determine which distribution to use.
With that, they fit the full sample of measurement observations to the given
Gumbel distribution (without using BM or PoT) to ascertain that the accumu-
lated execution time of individual tasks (assumed to be independent) does not

12



exceed its pWCET distribution at that confidence level. The authors of [55]
apply BM instead, and fit a Gumbel distribution to the resulting selection, us-
ing Chi-squared tests [96] to assess its goodness. The soundness of the resulting
pWCET estimate is then assessed against a very large sample of measurement
observations. [103] compares the use of BM and PoT, also studying their sensi-
tivity to the input parameters. Griffin et al. [51] explain that modelling discrete
processes (execution times measured in clock cycles) with continuous distribu-
tions such as Gumbel’s may lead to pessimistic pWCET estimates. The cited
authors also illustrate the difficulties of preserving the i.i.d. properties required
for the application of EVT1, and propose guidelines to mitigate the correspond-
ing risks and derive reliable pWCET estimates. Lima and Bate [78] elaborate
further on the problem posed by the use of discrete data, which may impede
a proper use of EVT, and suggest adding random padding to the execution-
time measurements to circumvent that problem and apply EVT soundly. Yue
et al. [81] address the lack of independence in the data set, by proposing an
alternative data collection method. They propose retaining only the highest
values from potentially-dependent execution-time measurements, repeating this
process until a sufficient number of maxima are obtained that can be shown
independent, so that EVT can be reliably applied to them. The same authors
also suggest computing multiple pWCET estimates (with repeated applications
of the proposed method) and the corresponding confidence interval, so that a
given pWCET estimate at the chosen confidence level can be selected. Lima
et al. [79] analyze scenarios where the whole GEV family of distributions can
be applied: those where the input data come from multiple distributions (i.e.,
from input values that may cause execution to traverse different program paths),
as well as computing platforms with or without time randomization. In order
to create a source of randomness and thus obtain sufficient variability in the
measurements, the authors apply random sampling across observations. This
particular work does not discuss the representativeness of the studied scenarios
with respect to the execution conditions expected at operation.

Abella et al. [7] employ the Coefficient of Variation method (CV) [38] to
determine all GPD parameters except the shape, and compute the best (pre-
sumed) exponential distribution that fits the data, after confirming that the
exponentiality assumption cannot be statistically rejected. The CV method
differs from that in [34], which selects the parameters that best fit the data
regardless of the distribution family, before choosing a shape parameter that
matches an exponential distribution.

Statistical Requirements for Data Samples A fundamental statistical
requirement in the original formulation of EVT is that the observations need
to be independent and identically distributed (i.i.d.) [49, 55, 51]. For the pur-
poses of pWCET estimation, satisfying the independence requirement may be
impaired by data collection practices or even inherent effects of the execution
platform: [22] studies the effect of dependencies across execution-time measure-
ments of program components. In fact, it has been shown that EVT can be
used to analyse stationary processes, where dependence exists across variables,
but only as long as the dependencies are managed conveniently to warrant the

1This work does not consider stationary processes where some degree of dependence can
be tolerated.

13



reliability of the resulting distribution [32, 73]. Santinelli et al. [103] analyze
the impact of stationary processes in pWCET estimation, and conclude that
dependencies across execution-time measurements may cause pWCET under-
estimation. Along the same line, Melani et al. [85] single out the individual
factors that may lead to dependencies, such as cache state modifications across
runs and scheduling policies. That work concludes that, while those factors
cause significant dependencies across measurement observations, they can be
accounted for in the use of EVT via appropriate independence and correlation
tests. The cited authors also suggest that when those factors combine with
some random phenomena (such as, e.g., random choice of program input), the
dependencies become less important. As noted earlier, [78] shows that adding
a random padding to the measured values also decreases dependencies across
them. Whilst this may allow preserving the base EVT assumption of i.i.d.
random variables, it remains to be proven constructively whether using data
padding to model a dependent process as an i.i.d. process does always lead to
reliable pWCET estimates.

3.3.3 Other Statistical Approaches

Although preponderant, EVT is not the only statistical and probabilistic tech-
nique that has been used with MBTA. Bernat et al. in [22] propose a hybrid
MBTA method where empirical execution-time profiles are gathered from ob-
servations taken at the level of the program’s basic blocks, and then combined
together to determine an end-to-end pWCET distribution. While this work
predicates on the notion of pWCET distribution, it applies no predictive model
to determine it: the pWCET distribution is derived by conservatively combin-
ing the execution-time profiles associated to the program’s basic blocks over its
control-flow graph. In this respect, this work is much closer in concept to SPTA
than to MBPTA.

In a similar vein, [110] addresses the problem of determining the execution
time of soft real-time systems, where probabilistic deadlines are defined, which
can be missed with a given probability. The cited work focuses on application
scenarios common to the robotics/image-recognition field, where the computa-
tion time depends on the complexity of the current real-world situation. In this
case, the i.i.d. property does not hold. To overcome this shortcoming, the au-
thors propose to model the timing behaviour using a hidden Markov model to
represent different execution modes (associated to states in the Markov model)
and valid transitions across them. In that manner, the authors infer states and
transitions directly from sequences of execution-time observations, thus mod-
elling residual dependencies accurately. At that point, the execution-time dis-
tribution for each state can be described with an independent random variable.

3.4 MBPTA Application Procedure

The EVT-based element of MBPTA requires its application procedure to pro-
ceed across four distinct steps, possibly iterated multiple times, while always
paying attention to representativeness (which we discuss separately in Sec-
tion 4).

1. Statistical verification: where the set of collected observations are checked

14



against the prerequisites for the application of EVT (i.e., i.i.d. and sta-
tionarity);

2. Data filtering : the data set is filtered (with either BM or PoT) to retain
only the values that belong to the tail of the execution-time distribution
of the program of interest;

3. Parameter selection: where a specific distribution family is selected, along
with the set of parameters that correspond to either the GEV or GPD
equations;

4. Distribution fitting : where the pWCET curve that arises from the above
parameter choice is fitted against the data sample.

The MBPTA approaches in the state of the art differ in the specific as-
sumptions that they make and the technique that they use to perform those
steps.

A first attempt to establishing a solid and repeatable EVT-based MBPTA
application procedure for multi-path programs appeared in [26, 34]. The former
work [26] provides a high-level discussion of those requirements; the latter [34]
presents a procedural description of the proposed application procedure. Those
works build on HWRand platform with explicit enforcement of the worst-case
initial state before each measurement to meet the i.i.d. statistical requirements
of EVT, while also assuring representativeness; BM is used to sample the col-
lected observations and then the best-fit location, scale and shape GEV param-
eters are estimated. At that point, the shape parameter is tested against the
exponential hypothesis with the Exponential Test (ET) [41]. If passed (when
ξ ≈ 0), ξ is forced to 0, to match a Gumbel distribution. The cited authors
postulate that a minimum number of observations [34] can be incrementally
determined by checking that the pWCET curve becomes stable (that is, it does
not change significantly when feeding further observations to the procedure).
The Continuous Ranked Probability Score (CRPS) [46] is used to determine
the closeness of the distributions obtained at each round of application. The
proposed method is then applied to multi-path programs assuming the user is
responsible for providing the input data that cause the traversal of all the pro-
gram paths of interest to the pWCET computation. All those paths are then
jointly and indistinctly assumed to contribute to the sought distribution.

For both HWRand and SWRand platforms, the authors of [7] present an
MBPTA approach that uses the Coefficient of Variation (MBPTA-CV), already
outlined in Section 3.3.2. The authors postulate that the exponential tail can be
always used to model the pWCET, backing their claim with the time-bounded
nature of real-time programs of interest to WCET analysis, the characteristics
of the execution platform, and the granularity level (per path) at which EVT
is applied. In contrast with [34], MBPTA-CV uses PoT instead of BM, thus
achieving reproducibility (i.e., yielding the same output when applied to the
same data). As a further point of difference, MBPTA-CV fits the best expo-
nential tail to the data, instead of fitting the best GEV distribution and then
forcing ξ = 0, which may not be the best exponential fit for the data.

[53] defines a framework for the application of EVT, to ascertain the appli-
cability of EVT to execution COTS platforms that do not employ randomiza-
tion. [102] follows suit, using PoT (hence GPD) and proposing that an array

15



of statistical tests should be passed with a given confidence level to guarantee
a statistically reliable application of EVT. The same confidence levels are sub-
sequently used to sustain the reliability of the results, in contrast with [34, 7],
which assess the quality of the pWCET distribution indirectly, as part of the
parameter selection step.

[21] uses EVT to analyze the timing behaviour of highly-parallel applica-
tions running on GPGPU. The MBPTA application procedure in the cited work
broadly aligns with [34, 26] except that the authors’ interest is more centered
on the assessment of the EVT statistical requirements, owing to the looser in-
dependence conditions of their problem.

Lesage et al. [76] present an evaluation framework to assess the reliability of
MBTA. The proposed approach combines timing data with compiler-generated
structural information, to guide the construction of synthetic path traversals
(random walks) that can be used to test the robustness of the analysis ap-
proach, especially when different coverage conditions are met. The authors’
framework is then instantiated to the MBPTA context, using a maximum enve-
lope2 to compute a single pWCET distribution out of observations from multiple
program paths. Experimental results confirm that the quality of the results is
highly dependent on the attained path coverage.

3.5 Summary

Existing MBPTA approaches prevalently base on EVT and all share similar
procedural steps. Individual approaches differ in the assumptions that they rest
on and in the statistical tools that they use. At the outermost level, the research
proposals divide between those that prescribe the use of randomization in the ex-
ecution platforms [34, 7] and those that assume unmodified (time-deterministic)
platforms [21, 53]. Experimental evidence shows that randomized execution
platforms facilitate meeting the statistical prerequisites of EVT. When the al-
ternative approach is pursued, the method used to collect the measurements
must be studied with care (cf. Section 4).

The use of BM or PoT appears to be equally valid, when used within sound
methods.

Predefined governing assumptions on the timing distribution of the target
program generally guide the (GEV or GPD) parameter selection, with the Gum-
bel (GEV) or Exponential (GPD) distribution being normally regarded as the
most appropriate choice for the problem domain [44, 34, 7].

No universal consensus exists to date on how to assess the quality of the
pWCET distribution derived with EVT. Some works [53, 102] use the confi-
dence levels obtained from the assessment of statistical prerequisites, to indi-
rectly evaluate the quality of the EVT results, which however postulates a strong
correlation between prerequisites and results. The quality of the model is typi-
cally ascribed to the goodness of the parameter selection [34, 7], where a more
accurate selection is bound to yield better results. Other approaches [79] suggest
the adoption of standard statistical diagnostic tools, such as the Quantile-to-
Quantile [28] or the Mean-Excess plots [20]. Both solutions are complementary
and not really alternative. And yet, any claim on the soundness of the MBPTA

2A maximum envelope of a set of distributions stands for the distribution that, for each
exceedance probability in a set of input distributions, takes the maximum pWCET value
across them.

16



results (over and above the use of EVT) must address the representativeness
concern.

4 Representativeness

4.1 Introduction

For all measurement-based analysis techniques, the concern of representative-
ness regards the ability to assure that the execution conditions encountered
when collecting the observations correlate significantly with those that can oc-
cur during operation. The umbrella term “execution conditions” refers to all the
factors that may affect the timing behaviour of a program when run on a given
processor platform, including for example its memory layout (which determines
cache mapping and may thus have large impact on the cache behaviour) and
the parallel contention load on shared hardware resources in multicores.

The representativeness concern is external to EVT, as EVT treats the system
of interest as a black box, without considering the system’s internals when the
observations are taken. Thus, the EVT projections only hold for the “world” as
seen during the analysis. Whereas the events observed at different moments of
the same analysis (i.e., in different runs of the same program) may contribute to
one combined probability distribution, EVT has nothing to say on unobserved
events.

Figure 4: An exemplary Probability Distribution Function of the execution time
of a program.

This notion is better understood with Figure 4, which portrays for illus-
tration purposes the real (hence conceptual) probability distribution function
(PDF) of the execution time that a program can take. An artifact of this kind
cannot be obtained in the general case as only a (small) sample of the corre-
sponding observations can really be taken with finite effort, so that an empirical
PDF is obtained instead. The PDF presents three peaks with decreasing den-
sities, at 150k, 250k and 355k cycles, respectively. Each such peak is caused
by a particular set of (not necessarily disjoint) execution conditions. Assume
that the execution conditions that trigger the right-most peak would not occur
in the analysis sample. In that event, EVT is unable to capture the right-most
peak in the tail (which, without seeing sufficient elements of it, could be lo-
cated arbitrarily far to the right of the abscissa). Applied to this example, the
representativeness concern reduces to the need to assure that the analysis ob-
servations capture all the execution conditions of interest to pWCET analysis,
so that EVT can factor all due peaks in its predictions.

17



While representativeness is acknowledged as a critical issue for EVT predic-
tions [32], a number of works either assume it to be given or outside of scope, or
conjecture the execution conditions incurred in the input sample collection do
suffice for pWCET estimation [44, 55, 51, 81, 103, 79, 78]. [25] notes however
that the user may often be unable to control the low-level hardware features
that have bearing on representativeness.

Arguably, representativeness plays a key role in the pWCET estimation pro-
cess. Platform characteristics and means to account for different program paths
may lead to obtaining either a single execution-time sample (hence a single
execution-time distribution) or multiple ones. In the latter case, different ap-
proaches have been followed to obtain a single pWCET estimate (that is, a
single execution-time distribution) from the multiple distributions sampled.

4.2 Program-Structure Representativeness or Path Anal-
ysis

The variable set of program paths that observation runs may traverse is one
of the main sources of jitter in the program’s execution-time behaviour, which
impends on the representativeness concern. Several probabilistic approaches
have been proposed to address that challenge.

4.2.1 Applying EVT or Other Statistical Means to Multiple Pro-
gram Paths

To use MBPTA for multi-path programs, one needs to determine how (i) to
apply EVT to those program paths; and (ii) to guarantee that the obtained
pWCET results are valid for all the possible path traversals that may occur
during the nominal operation of the analysed program.

As we noted in Section 3.3.3, [22] collects execution-time measurements for
small program units (basic blocks or functions) that correspond to different exe-
cution paths, and uses their frequency of observation to construct an execution-
time profile (ETP) for each such structural unit. At that point, the cited work
uses appropriate mathematical operators to combine the individual ETPs into
a pWCET for the whole program, in a manner that upper-bounds the execu-
tion time of any single end-to-end path traversal. The authors use convolutions
to combine the ETPs of independent program units and define an extended
form of joint convolution for units that are known to have dependencies or,
conservatively, where dependences cannot be excluded.

Other authors [79, 34] propose merging the execution-time measurements
taken across multiple program paths into a single bucket, which is then passed in
input to EVT. [102] shows that proceeding in that way does not work in all cases.
Milutinovic et al. [91] discuss the risk of the single-bucket approach, which causes
the pWCET to reflect the path traversal frequency as occurred during analysis,
which the user may have great difficulty at correlating with the operational
behaviour of the program. Authors further show that, when using Gumbel
distributions, the single-bucket approach may lead to pWCET estimates that
either are optimistic (i.e. not upper-bounding) for some, possibly all, individual
program paths or exceed all of them, thus incurring unwanted pessimism. [91]
recommends the multiple-bucket approach, instead, where each execution path
is analysed separately, and a joint pWCET estimate (known as the maximum

18



envelope) is obtained as the pWCET profile that upper-bounds the distributions
computed for all individual traversed path, and for each exceedance probability
of interest. The multiple-bucket method can be adopted by all approaches in the
state of the art that originally apply the single-bucket method ([34, 79, 102]).

[7] follows the multiple-bucket approach and pays special attention to the
curve fitting step of the MBPTA application procedure. The authors maintain
that the Exponential distribution (GPD) or Gumbel distribution (GEV) are
always a safe choice for modelling the worst-case execution-time behaviour of a
real-time software program, and propose an analysis procedure to be applied on
a per-path basis. The authors’ method seeks representativeness with a combi-
nation of upper-bounding precautions and time randomization in the execution
platform.

4.2.2 Assuring MBPTA Results for All Program Paths

This problem is inherent to all measurement-based analysis approaches, which
can only speculate on the observations made during the analysis and therefore
produce results that are only valid as long as those observations are representa-
tive of the worst-case execution conditions (including worst-case path traversal).
Curing this problem by requiring the user to achieve full path coverage in the
analysis observations is not a tenable option in the general case. This problem,
generally referred to as path-representativeness, is bypassed in [34] by predi-
cating on the user’s ability to discern the relevant paths in a program. This
assumption however can hardly be generalized. Other works [82, 79] suggest
making random picks across all possible input data to the program, to select
a random subset of program paths and associated execution conditions. This
method however offers no absolute guarantees of coverage.

A number of methods propose to synthetically extend the degree of path-
representativeness that the user-provided input data can attain in the general
case [66, 114], so that the pWCET distribution obtained with MBPTA is trust-
worthy, even when the path traversals made during the analysis cannot be guar-
anteed to have included the worst-case path. [66] presents the Path Upper
Bounding (PUB) technique to artificially balance the branches of all individual
conditional control flow constructs in the program so that any branch is a safe
upper-bound for all the other branches in the same construct. Balancing is ob-
tained with an extended binary version of the target program (used at analysis
time only), where additional core and cache access instructions are inserted as
needed on the individual branches of the conditional construct. The execution-
time measurements collected for the extended version of the program thus are
by construction an upper bound to all possible path traversals in the original
program, which is the one that is eventually deployed at operation. The degree
of over-estimation incurred by balancing depends on the particular structure
of the program under analysis. The main drawback of PUB is that it needs
a qualified compiler to generate a semantically-preserving extended version of
the original program. Indeed, those compiler transformations may be overly
difficult for complex programs, for example those that use “goto” or breaks in
loops.

With a similar intent, Ziccardi et al. [114] propose the Extended Path Cov-
erage (EPC) technique, a fully automated approach to artificially extend the
set of measurements to achieve the same effect of full path coverage. EPC relies

19



on the concept of probabilistic path independence to generate a set of synthetic
observations that complement the set of measurements actually collected. EPC
operates at the level of basic blocks whose execution-time observations are syn-
thetically made independent from any specific path in the program, so that
they can be used as building blocks to derive end-to-end measurements for un-
observed paths. Feeding EVT with the union of measurements from observed
and unobserved path traversals achieves the same effect as full-path coverage,
without any additional burden on the user. EPC requires that the original ob-
servations assure basic-block coverage: this is a realistic requirement in some
application domains, certainly lighter than its full coverage alternative.

Both PUB and EPC have been developed for HWRand platforms, but in
principle they might be adapted to SWRand platforms too. Instead, their direct
use for time-deterministic platforms would either fail or deliver too pessimistic
results (e.g. assuming that almost all cache accesses are misses).

4.3 Platform-Related Representativeness

The use of complex processors induces hardware-related sources of jitter that
need to be accounted for in any claim of representativeness. The MBPTA re-
search in this regard follows two trails: one that addresses time-deterministic
platforms, which embed no MBPTA enabler underneath the application; the
other that studies how time randomization, transparently implemented in hard-
ware or software or both, helps meet the MBPTA application requirements.

4.3.1 Time-deterministic Platforms

A reliable application of EVT for pWCET estimation requires the user to ac-
curately understand the population of hardware events that may occur during
operation [25] and determine whether and how far analysis-time observations
can trigger them. Admittedly however, enumerating all sources and all com-
binations of execution conditions with impact on the program’s execution-time
behaviour is an intractable problem in the general case. Moreover, the cost and
complexity of constructing an input data set that triggers each and every such
event is out of reach for most users. In fact, to the best of our knowledge, no
work exists to date that solves this problem in a sufficiently general manner.

In [82] authors propose random sampling across program’s input values as a
means to explore different execution conditions. This approach, however, does
not allow drawing solid conclusions on the coverage achieved. Interestingly, an
approach of this kind may indeed produce data samples capable of passing i.i.d.
tests (except for programs with low variability in execution-time behaviour), and
thus lead to mechanically successful applications of EVT but that are unfit for
pWCET computation, owing to fundamental deficiencies in representativeness.

[83] studies measurement protocols in general, that is, abstract procedures
to follow for collecting execution-time measurements, without adapting them
to any specific platform. This work suggests that a measurement protocol con-
verges when, as more measurements are added to the analysis sample, the closer
the resulting pWCET estimate gets to the pWCET that would have been ob-
tained using (ideally) the whole population of execution times. A measurement
protocol achieves representativeness if there exists a number k of execution-time
observations that allows obtaining a pWCET close enough to the actual (ideal)

20



WCET. Notably, [83] offers only a qualitative argument to support the claim of
convergence, which has not been sustained with quantitative evidence.

4.3.2 Time-randomized Platforms

Several works present hardware designs that aim to help achieve representative-
ness. All those proposals explore ways to control the jitter of certain processor
resources. We briefly survey each of them in isolation, noting however that
they can be combined opportunistically in accord with the characteristics of the
platform and the needs of the application.

Probabilistic Upper-bounding Time-randomized processor architectures
aim at helping the user achieve representativeness with less effort [70]. This
approach attacks the hardware sources of jitter with high-enough impact to
justify design change. When the events that they generate become random,
then the user problem reduces to assuring that the quantity of observations
made is sufficiently large for the whole spectrum of variation to manifest itself.
To put it simply, for a random source of jitter with probability of appearance
of Pe = 0.1 per use, the probability of not observing it in R = 1, 000 single-use
runs is Pno = (1 − Pe)R = (1 − 0.1)1000 ≈ 4.3 × 10−5 The domain regulations
will then determine whether such a probabilistic assurance level is sufficient.

Deterministic Upper-bounding Processor resources whose jitter is low
enough to not justify time randomization but not insignificant for the analy-
sis, are modified to allow the user to set them to respond with their worst-case
latency during analysis [70]. In that manner, the jitterless timing behaviour
of those resources during analysis is assured to upper-bound their jittery be-
haviour during operation. A typifying example of these resources is the floating
point unit (FPU), some of whose operations may take a variable response time
depending on the operands. It would be unthinkable for the user to study the
probability distribution of operands during operation and to figure how to re-
produce it during analysis. The ability to force the FPU to always respond with
worst-case jitter per operation type during analysis relieves the user from that
burden. An approach of this kind has been used also to study contention effects
with hardware shared resources [95][12].

Padding An alternative to touching the hardware design is to artificially en-
large the collected execution time values before passing them to EVT [40]. The
increment factor is designed, on per processor resource basis, to capture the
maximum time overhead that such resource might cause in the observed use.
This approach was used in [40] to upper-bound the impact of contention on
access to hardware shared resources in a multicore. Unlike deterministic upper-
bounding, this technique is pessimistic in that the padding may yield jitter costs
higher than the absolute maximum.

4.3.3 Cache-centric Solutions

[8] shows that, with time-randomized hardware, all high-impact sources of jitter,
except for cache placement, can be observed sufficiently well to apply EVT to
them. This is not surprising as caches are one of the processor resources with

21



the highest impact on the program’s WCET. As such, the quest for determining
the worst-case behaviour of caches has attracted the attention of the WCET
research community [56].

For set-associative caches, the de-facto standard in real processors, the events
of interest to EVT originate when the number of program’s code or data objects
mapped to the same set exceeds the set capacity (the number of ways) [8].
In fact, this scenario may cause an abrupt increase in the miss ratio, and a
correspondingly large inflation in the program’s execution time. If events of
this kind can happen with a non-negligible probability during operation, they
have to be captured at least once in the observation runs performed during
analysis, in order for EVT to account for them [8].

The role of caches in the representativeness problem is discussed in [101]
and [88]. [68] and [69] study how that problem changes when the caches use
random placement or modulo placement combined with software randomization
techniques.

Hardware Randomized Caches In non-parametric random placement caches
[104, 109, 23], placement considers only the address of the memory request. As
a result, a given memory layout determines a single cache placement, much like
with conventional deterministic caches based on modulo placement. The former
and the latter therefore have the same limitation with respect to representative-
ness: they are exposed to highly unlikely but extremely heavy pathological
cases.

Time-randomized caches [64, 65, 59], on the other hand, feature parametric
placement functions, which allocate data in cache lines based on a combination
of the request address and an arbitrary random number. By changing the
random parameter across runs, those designs yield a different cache placement
for each execution, which allows addressing the representativeness problem by
sampling observations across distinct program runs.

[8] shows that, for hash random-placement caches with S sets, it is possible
to determine whether at least W + 1 program objects out of the total K under
consideration are mapped to the same cache set, by considering all potential
mappings of the K objects to the S cache sets and the fraction of those mappings
where at least one cache set has W +1 objects allocated to it. The result of this
operation can be approximated with weak compositions. A weak composition
of an integer n is a way of writing it as the sum of a sequence of non-negative
integers. The cited work studies all the weak compositions of K made of exactly
S parts, where at least one part is higher than W . From this analysis, the
cited work derives the probability of the cache event of interest, Pce, and the
probability of not observing it in R observation runs, Pno = (1 − Pce)R. One
proposed solution then consists in increasing R until Pno becomes small enough
to be acceptably ignored. One other solution is to repeat the analysis with a
cache with a smaller number of sets, to increase the probability of occurrence of
the cache event of interest to the point of capturing it with higher probability
with R observation runs.

[19] presents an alternative to weak compositions using the multinomial co-
efficient that derives exact results instead of approximations. To mitigate the
non-negligible computational costs of using the multinomial coefficient, the cited
work proposes Monte Carlo simulations to approximate the probability of the

22



event of interest, with a given precision.
[90] notes that the previous solutions assume that the impact of all addresses

on execution time is similar. For instance, given three addresses, A, B, and C,
which access a direct-mapped cache, those techniques assume that mapping A
and B, A and C, or B and C to the same set has the same impact on the
program’s execution time. This might be so when the addresses are accessed
homogeneously. Yet, in the general case, not every combination of addresses
– when mapped to the same set – results in an execution-time increase of the
same magnitude. To address this challenge, the cited work proposes ReV S, a
computationally-intensive method to compute exactly the probability and im-
pact that each cache allocation can have on execution time. For sets with W
ways, the proposed solution takes in input the sequence of accessed addresses
of the program and builds all combinations of W + m addresses (with m ≥ 1)
out of the K addresses in the program. The impact that each such combina-
tion can have on the miss count is determined with a cache simulator, whereas
their probability is derived analytically. With this analysis, the user can assess
whether R observation runs are sufficient to capture the cache allocations with
low-probability and high-impact. Otherwise, more runs are needed until the
condition is satisfied.

[89] presents a less effort-intensive variant of that solution. Instead of run-
ning simulations in the cache simulator for all combinations of W +m or more
addresses, it uses a quantitative metric to single out the combinations of W +m
that may have high enough impact.

Software Randomized Caches [18] studies the difference between software
and hardware randomized caches, for programs with homogeneously accessed
objects. The authors show that, for hardware randomized caches, the probabil-
ity PS of an object to be assigned to a given set for S sets is 1/S. With software
randomized caches, dependencies exist among the sets allocated to a given ob-
ject and those that can be assigned to another. Accordingly, the probability of
allocating an object to a given set reduces as more objects are already allocated
to it. This dependency causes the probability of the cache events of interest to
differ for software-randomized caches from their hardware counterpart.

4.4 Summary

Representativeness is a key concern for all measurement-based timing analy-
sis approaches. Its problem space spans the Cartesian product of all distinct
sources of jitter of interest, both high-level, such as program paths, and low-
level, such as stateful processor resources. The MBPTA results are valid only as
long as the execution conditions experienced during analysis are (conservatively)
representative of those that may occur during operation.

The quest for sufficient path coverage in the analysis encompasses two con-
trasting trends. Some authors [66, 114] seek to achieve full path coverage
synthetically, adding structural program knowledge to the postulate that the
user-provided input data to the program assure basic block coverage. Other au-
thors [82, 79] prefer to soften the requirements and propose sampling randomly
from the input data space. While attractive from the user perspective [79, 78],
solutions of the latter kind have fundamental weaknesses: they cannot yield
solid (upper-bounding) correlation between the program paths traversed in the

23



observation runs and the unseen ones; furthermore, owing to the black-box
nature of EVT, they may produce results that are either unreliable or overly
pessimistic [91, 102].

The same problem, only grander, presents itself for the processor resources,
in the need to assure that the effects of the execution conditions incurred in the
observation runs upper-bound those that may occur during operation. Expect-
ing the user to achieve full control of the low-level factors of interest is evidently
untenable, and, again, random sampling from the program’s input space as pro-
posed in [82] offers only a manner to possibly incur enough variability to satisfy
EVT mechanically, but not to warrant a reliable solution for MBPTA. Low-cost
hardware modifications, transparent to the application, have been studied ex-
tensively to help building arguments of representativeness [8, 90, 89]. To become
more industrially viable they have to be extended to COTS processors, which
is still work in progress to date.

5 SPTA

5.1 Introduction

Probabilistic reasoning has also entered the world of static timing analysis,
which builds a-priori models of worst-case behaviour. [35] is an early instance
of that union, which does not require any form of platform randomization,
thus falling into the category of classic static timing analysis. The cited work
assumes that probabilities of occurrence can be attached to the outcomes of
the conditional branches in a program. By propagating that information along
the abstract syntax tree of the program, and assuming that the WCET cost
of individual program units be statically known, the authors compute a-priori
traversal frequencies for individual runs and consequently for execution-time
values.

Conversely, the static analysis techniques that assume (require) some de-
gree of platform randomization fall under the umbrella of Static Probabilistic
Timing Analysis (SPTA), which aims to yield probability distributions for the
program’s execution time. The presence of a randomized cache is the funda-
mental assumption at the basis of SPTA research and the fundamental enabler
to its state of the art solutions. In randomized caches, a random eviction oc-
curs in response to either a cache access (evict-on-access) [26] or a cache miss
(evict-on-miss) [64].

SPTA solutions construct execution-time profiles (ETPs), that is, discrete
representations of the probability mass function of the time cost of program
units, which were considered for the first time in [22]. ETPs can be defined
at various levels of abstraction and granularity of program execution, from in-
dividual processor instructions in the program binary (static view) or their
executed instance (dynamic view, which carries contextual information akin to
loop unrolling and call-context in classic static timing analysis [112]), to groups
thereof. ETPs for static instructions provide a safe over-approximation over all
possible executions. ETPs for dynamic instructions, instead, allow constructing
a tighter bound to the actual timing behaviour. Representing the timing be-
haviour of single instructions as an ETP requires a precise micro-architectural
model of the execution platform, a common need to static timing analysis [112].

24



Whether explicitly or implicitly, all current SPTA solutions work at the level of
static instructions, which is deemed more robust against the lack of precise tim-
ing information, and thus less demanding to the user. Unless explicitly stated,
therefore, we assume this choice by default in the sequel.

For a given (static) instruction x, the ETP describes the latencies {etxi} that
its execution can incur, and the associated probabilities {Pxi

} of occurrence.
Accordingly, the ETP for instruction x can be defined as follows:

ETP (x) =

(
etx1

etx2
· · · etxn

Px1
Px2

· · · Pxn

)
,

n∑
i=1

Pxi
= 1

SPTA postulates that the ETPs of individual instructions can be composed
to build up the ETP of any sequence of instructions up to the entire program.
The independence of the ETPs of individual instructions in a sequence is guar-
anteed by either making assumptions on guarantees offered by the underlying
hardware platform [26] or explicitly removing potential dependencies in the
modelling of individual ETPs (e.g., by considering lower bounds to the proba-
bility of hitting in cache). On the assumption of independence, SPTA computes
the ETP of an instruction sequence by applying discrete convolution (⊗) to
their individual ETPs. More formally, let X and Y denote the random variables
that describe the execution time of instructions x and y respectively. Their
convolution Z = X ⊗ Y is defined as:

P{Z = z} =

k=+∞∑
k=0

P{X = k} × P{Y = z − k}

Figure 5(a) shows an example convolution of two ETPs. The remainder of
this section illustrates the SPTA application procedure and discusses how its
computational cost can be mitigated.

Figure 5: SPTA basic concepts: (a) convolution; (b) sampling; (c) inter-ETP
parallelization.

25



5.2 SPTA Application Procedure

The concept of ETPs and convolutions was first used by Zhou in [113], where
the latencies of individual instructions are determined by the cache hit and miss
latency for code and data. The hit and miss probabilities in a random cache
relate to the number of memory accesses that occur between two subsequent
accesses to the same memory block (aka reuse distance): this value provides
an upper bound to the number of potentially evicting events. However, [15]
shows that the eviction probabilities across instructions are not independent in
evict-on-miss random caches, and consequently, the prerequisites for convolu-
tion do not hold. By using convolution on those dependent ETPs, Zhou obtains
a probabilistic approximation of the program’s execution time, which is not a
pWCET estimate, for it is not guaranteed to upper-bound the real execution-
time distribution. Hence, Zhou’s approach cannot be regarded as an instance
of SPTA. While such model requires only reuse distances for fully-associative
caches, it needs precise addresses and the corresponding cache mapping for set-
associative and direct-mapped ones. In fact, such constraint also holds for all
SPTA techniques considered next.

The first definition of a proper SPTA approach was presented by Cazorla
et al. in [26]. The proposed solution addresses single-path programs, assum-
ing evict-on-access random caches, where cache hits do cause evictions. In
that work, the notion of reuse distance is applied to conservatively build ETPs
that are assuredly independent and can be convolved, so that the result is a true
pWCET estimate. In particular, the said authors use reuse distances to estimate
lower bounds to the probability of hit of each access. By using evict-on-access
random replacement, whether memory accesses in between two consecutive ac-
cesses to the same memory block hit or miss is irrelevant since they cause a
constant number of evictions, which facilitates the construction of independent
ETPs, as needed for convolution.

Subsequent works address other cache policies [36], multi-path programs [77],
and attempt to improve on the analysis precision [15]. [36] extends SPTA to
evict-on-miss random replacement caches, where eviction occurs only in the
event of cache misses. [15] discusses the conditions for a correct application
of SPTA and the optimality of the equations used to approximate or stati-
cally bound the probability of hit and miss in random replacement caches. The
authors of that work stress the importance of using lower bounds to hit proba-
bilities as a means to render the ETPs of individual instructions independent.
The cited work also proposes an enhanced analysis to tighten the bounds on
the miss probability. Instead of working with reuse distances considered in iso-
lation (i.e., for individual instructions), the proposed approach uses additional
knowledge on the reuse distance of instruction sequences.

[14] studies the tightness of different mathematical formulations of SPTA
solutions. [101] questions the viability of applying SPTA to randomized caches,
on the grounds that it cannot possibly obtain results as good as those produced
by deterministic timing analysis using caches with modulo placement and LRU
replacement. [88] responds to that objection by noting that traditional ap-
proaches have great difficulties at working with global stack distances, across
instruction sequences, as studied in [15].

Lesage et al. [77] extend the multi-path approach in [36] by leveraging the
improvements in the upper bound to the cache miss probability proposed in [15].

26



The cited work assumes a single-level, fully-associative cache with evict-on-
miss random replacement. The same technique could in principle apply to
set-associative caches, yet facing serious scalability challenges.

5.3 Speeding up Convolutions

The number of elements in an ETP increases exponentially with the convolu-
tions performed to compute it. The ETP that results from the convolution of
two ETPs with sizes m and n ranges from m+ n− 1 to m× n elements. Sam-
pling techniques aim to keep that number under control, thus also reducing the
quantity of computations required to compute them [100, 84].

Re-sampling manipulates the values in an ETP so that the resulting ETP
has fewer elements and upper-bounds the original one, to avoid the risk of
underestimation. Borrowing the definitions from [80], and noting that an ETP
describes a random variable, we can see re-sampling as follows. Let X and Y
be two random variables. Y upper-bounds X, denoted Y � X, if P(Y ≤ D) ≤
P(X ≤ D) ∀D.

[100] selects k elements from the original n-element ETP and assigns the
probability of the residual n − k elements to the largest value of the resulting
ETP. The amount of pessimism incurred by re-sampling depends on the value
chosen for k, which is determined by the amount of time and memory available
for convolutions and ETPs respectively. Maxim et al. in [84] propose three
specific re-sampling techniques. A first basic method selects equally distanced
values in the original ETP and associates them the sum of the probabilities of
the ETP elements between them. This method preserves the shape of the distri-
bution but intensifies the peaks of it. Figure 5(b) shows an example of sampling
that reduces a 12-point ETP to a 3-point one. A second method attempts to
minimize the number of elements in the resulting ETP, using a re-sampling pass,
to force exactly the same distance among values in each operand of the ETP.
In this manner, the number of distinct values produced by the convolution gets
closer to the theoretical minimum. The third and more sophisticated technique
collapses multiple ETP entries while seeking to minimize the pessimism incurred
in aggregating them.

Other techniques study how to reduce the computational requirements of
SPTA. [92] proposes precision-preserving optimizations using parallelization tech-
niques: parallelizing the convolution procedure itself and performing multiple
convolutions in parallel, as depicted for example in Figure 5(c). [92] presents
a discretization technique similar to re-sampling, which reduces computational
complexity at the cost of additional pessimism in the analysis. Discretization
flattens the probabilities in the ETPs by rounding up the probability of the
highest latency, and rounding down that of the lowest latency. In that manner,
initially different ETPs eventually equalize, which yields computational gain as
the convolution of two identical ETPs can be performed much faster than the
convolution of different ones.

5.4 Summary

Research on SPTA has made important advances lately, on methodological
foundations and application procedure. Yet, numerous challenges, which we

27



enumerate below, remain to be solved before it can become a viable alternative
for industrial users.

Computational Complexity Despite the considerable improvements achieved
with re-sampling techniques as proposed in [100, 84, 92], the computation of se-
quences of convolutions still has a major computational impact. There is evident
tension between performing convolutions over large sets of ETP, each of which
with a non-negligible number of entries, and the risk of untenable pessimism
incurred by re-sampling.

Requirements While probabilistic analysis is resilient to occasional lack of
information (e.g., particular addresses of given memory accesses), the quality
of SPTA bounds in term of tightness largely depends on the quality and the
completeness of the information available to it, much like classic static timing
analysis in general. SPTA needs to know the latencies of each and every hard-
ware operation, whose availability and reliability are not certain [9]. Moreover,
as observed in [15], current SPTA formulations can only guarantee reasonably
tight results if they exploit a large amount of information on execution history,
which is difficult to ensure and costly to maintain. Solutions have been proposed
to that end, which aim to reduce (i.e., compress) the size of the needed state
information [52].

6 Platform

6.1 Introduction

We now survey the PTA-related works that focus on the execution platform and
propose hardware designs or system and application software solutions to facili-
tate the use and improve the effectiveness of PTA. To the best of our knowledge,
no hardware or software support at the platform level has been proposed for the
purposes of SPTA. SPTA assumes hardware architectures that feature a simple
core with instruction timings that can be accurately derived, and single-level
fully-associative or set-associative caches, with random replacement to enable
probabilistic reasoning [26]. When set-associative caches are used, SPTA works
further assume that all program addresses are known so that it is possible to de-
termine the precise cache set to which each address is mapped. To date, SPTA
has not been extended to multicore contention analysis.

Instead, numerous MBPTA works propose hardware designs to improve the
quality or the cost of the pWCET product. The techniques that they propose
mostly seek to assure representativeness, which we discussed in Section 4. As a
positive side effect, those solutions also help create execution-time distributions
that favor statistical analysis, e.g., by creating less discrete distributions or
facilitating the probabilistic modelling of execution times with i.i.d. random
variables.

MBPTA has also been applied to COTS processors. The works in this scope
fit into two distinct sets: those that propose MBPTA-specific software solutions
(e.g. in the compilation of the program) or SWRand (cf. Table 1); and those
that use COTS architectures with no special provisions for MBPTA. The latter
works fall short in representativeness, though, as discussed in Section 4.

28



6.2 MBPTA-supportive Hardware Designs

The works in this area concentrate on the processor resources that cause jitter
in the program’s execution time and that are hard to model for timing analysis.
Three processor resources have been studied extensively: caches, floating point
units, and the mechanisms to govern parallel contention on access to hardware
shared resources in multicores. One common goal of those studies, which we
surveyed in Section 4.3.2 from the standpoint of representativeness, is to propose
modified designs for those resources that allow their jitter to be upper-bounded
either probabilistically or deterministically [70].

6.2.1 Cache Memories

Caches accelerate the program’s access to memory, thereby reducing its WCET,
at the cost of more complex timing analysis. Complexity increases because
the addresses at which the program’s code and data are located – its memory
layout, which determines the program’s cache layout, i.e. the cache sets to which
the program’s data and code map – are an indirect consequence of multiple
(asynchronous) factors of system development. Different cache layouts can cause
significant variations to the program’s execution-time, owing to the possibly
(and normally) large imbalance between the cost of a cache miss over a hit.
Even the smallest difference in the order in which the program’s object files are
linked together may affect the cache layout and thus impact execution time. The
presence or absence of environmental variables and directives in the program’s
code, which one would consider irrelevant to this problem, can displace the
addresses of all program objects, changing its memory layout and consequently
its cache layout. Incremental integration, which is a convenient practice in
industrial software development, is another source of variations of cache layouts,
regardless of the logical independence between the old and the new software
modules. [87] studies this problem outside of PTA.

The works that study MBPTA-supportive cache designs propose random
placement in place of deterministic modulo-based policies. Random placement
first appeared in [104]. The cited work proposes using a pseudo-random hash
function in high-performance processors to distribute the data across cache lines
and thus make the cache performance less sensitive to different placements com-
pared to with traditional modulo placement. [109] bases on the same idea but
explores different pseudo-random hashing functions and provides a more com-
plete evaluation based on superscalar out-of-order processor architectures. The
cited work uses simulation to show that the proposed solution reduces conflict
misses. In skewed associative caches [23], each way uses a distinct hash function
for randomized placement across banks. That work shows that this solution
reduces conflict misses for programs that process large matrices.

A common trait of those randomization solutions is that their placement
function uses solely the address of the access. Hence, for a given memory lay-
out, only a single placement exists for all runs of that program, which renders
its effect similar to conventional deterministic architectures based on modulo
placement. For this reason, these non-parametric randomized cache designs
cannot be employed with MBPTA unless software randomization is used on top
of them.

The time-randomized caches proposed in [64, 59] use parametric placement

29



functions to allocate data in cache lines based on the request address and an
arbitrary random number. It is thus sufficient to change the latter parameter
(the random number) across program runs, to break the dependence between
the position in memory where an object is placed, i.e., its address, and the
cache set to which it is mapped. This solution facilitates providing probabilistic
assurance of the coverage of cache layouts that result in high execution times,
aka cache risk patterns [86]. Not surprisingly, the risk of pathological cache
layouts is one of the principal impediments to the unrestricted use of caches in
real-time systems.

Research on random caches for real-time systems starts with [99], whose
authors provide initial evidence of how randomized replacement allows quanti-
fying the risk of pathological behaviour, which cannot be assured with determin-
istic cache policies. The cited work also shows that the average performance
of random-replacement caches is acceptable. Motivated by this initial study,
several other solutions were proposed for fully time-randomized cache designs,
deploying random replacement and random placement.

Hash-based Parametric Random Placement [64] deploys a parametric hash
function that combines the requested memory address and a random number.
That function delivers the index bits used to determine the set to which the
accessed address is mapped. The hash function combines all the address bits,
except for the cache-line offset bits, via a set of rotator blocks and XOR gates,
and ensures that all address to set mappings have equal probability. Every time
the seed is changed (for example when a task starts or ends), the cache con-
tents are flushed. Accordingly, each (random) placement of addresses is valid
for a whole execution of the program of interest: the addresses mapped to the
same set compete for space during the whole run. With hash-based random
placement, all addresses are mapped to sets independently. Hence, addresses
that would otherwise perfectly co-exist in a given cache way, have a non-zero
probability to map to the same set, which increases the miss rate and negatively
affects execution time. [16] presents the first FPGA implementation and evalua-
tion of the cache design proposed in [64], using the Mersenne Twister as random
generator instead of the Multiply With Carry, for its better statistical proper-
ties. The evaluation considers the propagation delay and the area required on
that FPGA board.

Random Modulo [59] keeps the locality advantages of modulo placement but
breaks the dependence between memory location and cache placement. To that
end, Random Modulo prevents conflicts between cache lines that map to the
same cache way: by randomly permuting the random seed with the address tag
bits, two addresses with identical tag bits and different index bits are neces-
sarily mapped to distinct cache sets. Hence, two addresses that with modulo
placement would belong in the same cache way but different cache sets, are also
prevented from mapping to the same set with Random Modulo. This solution
avoids pessimistic scenarios where several addresses in the same cache way map
to the same set. Similarly to [16], [59] presents an FPGA implementation of
the proposed Random Modulo design and synthesizes it with an ASIC cell li-
brary. An evaluation based on the same criteria used in [64] shows how the
performance of Random Modulo exceeds that of hash-based parametric random
placement.

Multi-level time-randomized caches have also been studied. The first at-
tempt to analyse them [71] considers hash random placement and shows how

30



the events in a multilevel cache have a probabilistic nature, hence fitting the
premises of MBPTA. The authors analyse several L1-L2 inclusion policies (inclu-
sive caches, exclusive caches and non inclusion control) and write-miss policies
(write through and write back).

[106] studies hash random placement for non-partitioned last-level caches.
Cache partitioning is the preferred solution for shared caches, as it protects
the data updates of one core from the risk of eviction by another core, thereby
enabling per-core cache analysis. The cited work shows that the probabilis-
tic behaviour of random caches allows upper-bounding the impact that a task
running on one core may have on tasks assigned to other cores. This result
is achieved by controlling the frequency at which tasks are allowed to perform
evictions on shared caches, thus sparing the need to partition.

6.2.2 Arbitration Policies

Shared hardware resources normally comprise an arbiter that orchestrates con-
current accesses as a means to prevent or regulate conflicts. In the scope of
real-time systems, the arbiter must implement an assignment policy that yields
a known upper-bound to the longest suffered delay. Where classic analysis seeks
a deterministic single-valued bound (the longest possible duration), MBPTA can
use both deterministic and probabilistic bounds. While a deterministic bound
asserts that the probability that a request is delayed longer than the stipulated
amount is zero, probabilistic bounds provide a set of values, each attached to
an exceedance probability. To facilitate the latter, arbitration policies is meant
to incorporate some form of randomization in the grant assignment process.

The most basic randomized policy is known as lottery [74] where, at ev-
ery (slot) round of duration L, the grant is assigned randomly to one of Nr
requestors. Hence, the probability for a requestor to be granted access in the
first round is (1/Nr)

1 × ((Nr − 1)/Nr)
1−1 = 1/Nr. Likewise, the probability of

being granted access in the second round is (1/Nr)
1×((Nr−1)/Nr)

(2−1), which
becomes (1/Nr)

1× ((Nr−1)/Nr)
(3−1) in the third round, and so forth. Lottery

is an MBPTA-supportive policy thanks to the probabilistic nature of the guar-
antees that it offers of granting access in a specific number of cycles, and to the
fact that this assurance holds at analysis and at operation. It however suffers
the risk that the probability of not being granted access is never null (albeit
very small) after several rounds of arbitration.

Random permutations for buses [63] and tree networks-on-chip [105] is an
alternative randomized policy that is also MBPTA-supportive. Unlike lottery,
it guarantees that the probability of a request not being granted access in a
given number of arbitration slots does fall to zero. This is assured by the use of
an arbitration window of Nr slots, which contains the permutations of the IDs
of all requestors. The order in which access is granted follows the permutation
window, which changes randomly every time it is exhausted.

Other policies that allow providing a deterministic bound to the longest
wait time for a request owing to arbitration have been shown to be MBPTA-
supportive. For example, this is the case for round-robin [63] and TDMA [94].
The cited work shows that random arbitration solutions outperform determin-
istic alternatives either in terms of pWCET estimates or average performance.

31



6.2.3 Pseudo-random Number Generation

Pseudo-random number generators provide the random bits needed by random
placement, replacement and arbitration policies [10]. While the sequence of bits
that they generate is not truly random, the cited work presents an implemen-
tation that provides an output long enough to prevent repetitions for durations
commensurate with task run periods, thus preventing potential correlation of
events.

6.3 MBPTA-supportive Software Solutions

While HWRand platforms support MBPTA with low-complexity designs, some
of which have been implemented on FPGAs, it will take some time before they
can enter the processor market for good. Software support for MBPTA hence
aims at providing a short-term solution to apply MBPTA to COTS processors.
To date, the works in this area have concentrated on COTS caches.

All the proposed software randomization solutions leverage the fixed relation
between the main memory position and cache placement in deterministic sys-
tems, as well as between the binary and main memory layout. In addition, all
those solutions use random padding to displace programs’ memory objects, and
also reorder them across program runs or program compilations. The various
software randomisation solutions differ in the way they employ randomisation,
their intrusiveness on the compilation tool chain, and their friendliness to the
certification process.

Dynamic Software Randomisation [68] (DSR) uses self-modifying code dur-
ing program initialization (hence at every program run), to randomly allocate
code and global data, including the stack frame, whose size is decided at run
time. The DSR runtime has been ported to PowerPC [68] and SPARCv8 [33].
That work improves the original implementation by reducing its memory foot-
print and bounding the execution-time effect of its run-time operation. DSR
has been tested with avionics [111] and aerospace case study applications [33],
which have increased its TRL.

However, the DSR self-modifying code does conflict with automotive prac-
tices and technologies that allocate read-only code and data to flash memories.
Moreover, the use of pointers and dynamic objects is restricted by safety stan-
dards, e.g. ISO26262 [62]. Static Software Randomisation [69] (SSR) addresses
those issues. Unlike DSR, SSR operates in a static manner by performing a
random reallocation of object across distinct binaries of the same program. Se-
lecting one executable from the set of binaries generated by SSR allows reasoning
in probabilistic terms about the coverage of cache layouts. The static nature
of SSR makes the compiled software more amenable to certification. SSR has
been verified on top of real hardware platforms like AURIX [67].

7 Timing Analysis in the Presence of Faults

7.1 Introduction

Various authors have studied the impact of (hardware) faults on program’s
execution time, leading to probabilistic WCET estimates.

32



[57] analyzes the impact of random and independent permanent faults dis-
abling lines in modulo-placement and LRU-replacement instruction caches, us-
ing traditional static timing analysis (STA). The cited work studies the faulty
cache maps that may result from a given failure rate in SRAM bit cells, and
the degradation that this may cause to WCET estimates, associating the latter
to the probability of occurrence of each cache map. This work shows that, for
specific failure rates in SRAM bit cells, faults may occur in locations that af-
fect execution time (hence the program’s WCET) with a probability sufficiently
high to deserve attention. The probabilistic WCET estimates that result from
this analysis therefore relate specifically to the pathology of faulty maps. Hardy
et al. [58] extend their earlier work, proposing hardware techniques to mitigate
the impact of permanent faults in instruction caches. They show that the cache
sets whose lines are all faulty are the major contributors to WCET degradation,
and they propose mitigation techniques that use either a hardened cache way, so
that each cache set has at least one fault-free line, or a 1-entry shared buffer for
cache sets with all lines faulty. Their results show that those solutions trade off
differently, for hardware cost and WCET improvement, against non-hardened
instruction caches.

Other works focus on time-randomized caches. Chen et al. [31] consider
fully-associative caches with random replacement policies3 and model cache be-
haviour with Markov chains, where each state corresponds to a different set
of cache contents. With exponential cost, such Markov chains allow modelling
precisely and statically the probabilistic execution time of the analyzed pro-
grams, thus yielding costly but highly-accurate pWCET outcomes. This form
of SPTA is further optimized by limiting the set of addresses considered, thus
trading accuracy for speed of computation. Building on this Markov model, the
authors consider the impact of transient and permanent faults on the pWCET
estimates. Transient faults change the current state in the Markov model –
with a probability related to the failure rate of SRAM bit cell – by removing
the contents of one cache line. That transition happens on trigger from hard-
ware fault detection mechanisms such as parity checks. For permanent faults
instead, the work describes the program’s timing behaviour with N + 1 Markov
models, where N is the number of cache lines. Each model corresponds to a
number n ∈ 0..N of faulty cache lines. Upon a permanent fault, the content of
the affected cache line is marked erroneous and the system transitions from its
current Markov model with N − i fault-free lines, to the model with N − i− 1
ones.

[30] extends this line of work to account for the delay occurring between
fault detection and the diagnosis of its permanent nature. The cited authors
acknowledge that transient and permanent faults yield different latencies, and
propose considering a fault as transient until diagnosed otherwise. They further
show that, if permanent faults occur sufficiently often, as it could occur in
harsh environment conditions (e.g. space), the corresponding latencies need to
be accounted for, which requires quick diagnostic mechanisms, to contain the
inflation of pWCET estimates.

Slijepcevic et al. [107] study the impact of permanent and transient (hard-
ware) faults, including the overhead of fault detection, correction, classification

3The cited authors note that their work also applies to set-associative caches with deter-
ministic placement, by studying each cache set separately.

33



and recovery, in the context of MBPTA. The cited authors assume processors
that embed time-randomized caches, with random placement and replacement
policies, and show that the random nature of fault location, paired to random
placement lead to simple fault models. While time-deterministic caches require
considering all potential fault maps (whose cardinality grows exponentially with
the number of faults), time-randomized caches only require considering the max-
imum fault count, regardless of the fault location. Moreover, the probabilistic
nature of the fault-free platform (with time-randomized behaviour) and the
fault occurrence allow considering permanent faults in all cache memories at
once, independently of the complexity of the cache hierarchy. The cited work
supports its claims on a multi-level cache hierarchy, with a unified L2 cache for
instructions and data, and TLBs. Experimental evidence shows that pWCET
estimates degrade slowly as the fault count increases, since pathological align-
ments of faults and address placement occur with decreasing probabilities. The
authors also provide hints on how to account for faults in components other than
cache memories as part of the pWCET estimates, by decreasing the operating
frequency when needed [107].

Höfig [60] studies the impact of faulty sensors in WCET estimates. The
cited work analyzes the impact that such faults may have on program’s execu-
tion time, and proposes a failure-dependent timing analysis that considers fault
handling as determined by the applicable safety requirements. The authors
assume that worst-case response time bounds are known for the all system com-
ponents as well as fault probabilities for all sensors. At that point, the safety
mechanisms in place and their associated execution-time cost are characterised
as probabilistic additions to the known WCET, thus leading to pWCET esti-
mates. Interestingly, this approach can be combined opportunistically with any
technique that delivers any type of WCET estimate, whether probabilistic or
not.

8 Miscellanea

8.1 Introduction

A few other significant lines of work in the state of the art on PTA escape the
taxonomy presented in Section 2. We discuss them here under three headings:
case studies, which determine the viability and performance of PTA solutions
in application scenarios; comparative assessments, which study how PTA fares
with respect to traditional STA; and argumentative analyses, which assess the
fitness for use of PTA in certification-regulated domains.

8.2 Case Studies

The works in this category use either real processor boards with real-world ap-
plications, or abstract hardware models or architectural simulators with bench-
mark suites [98],[54]. All PTA case studies employ MBPTA: to the best of our
knowledge, in fact, no evaluation of SPTA has been performed to date in any
of the above settings.

[67] uses an Automotive Cruise Control System (ACCS), automatically gen-
erated from a Simulink model and targeted to the AURIX TC277 processor, to

34



show that static software randomization (cf. Section 6.3) enables MBPTA to
capture the effect of cache jitter on the pWCET.

[111] evaluates the use of dynamic software randomization (cf. Section 6.3)
with MBPTA for single-core and multicore variants of an MBPTA-supportive
processor simulator [63, 68] running two avionics applications (one for acquisi-
tion and maintenance of flight-control data, the other for estimating the center
of gravity position of the aircraft). [33] targets an FPGA platform based on
LEON3 with a mixed-criticality space application, controlling an active op-
tics instrument for space telescopes, to evaluate the performance of DSR (cf.
Section 6.3) implemented within the LLVM compiler and integrated with an
industrial-quality RTOS. The cited work shows that DSR enables MBPTA at
the cost of a modest performance penalty. Interestingly, the pWCET estimates
computed in those experiments are tighter than the typical 20% margin consid-
ered in current industrial practice over the high water mark execution time.

Fernandez et al. [48] use a LEON3 made MBPTA-supportive, with the FPU
forced to work at its highest latency, and deploying time-randomized caches and
TLBs, as presented in [59], to run a Thrust Vector Control Application devel-
oped by the European Space Agency. The cited work shows how the modified
hardware allowed MBPTA to derive sound pWCET estimates.

Lima and Bates in [78] apply EVT to measurement observations collected
on a Rolls-Royce Digital Engine Controller application, using the single-bucket
approach discussed in Section 4.2.1. The cited work presents the Indirect Es-
timation in Statistical Time Analysis (IESTA) technique, which the authors
propose as an alternative to time-randomization applied at hardware or soft-
ware level, to enable the use of EVT with otherwise overly-discrete or poorly
analyzable data sets. IESTA uses an artificial random variable to inject tim-
ing variability into the observation measurements collected during the analysis,
before applying EVT. The authors report that IESTA allowed them to derive
statistically sound models of the application’s timing behaviour.

8.3 Comparisons

Making a fair and sound comparison of different timing analysis techniques is
a hard challenge as individual techniques often build upon very different (and
possibly even antagonistic) assumptions. Yet, some works made some inroad in
that direction.

[6] compares MBPTA, STA and SPTA on a simple processor setup where in-
structions have fixed latency except for the jitter caused by the instruction cache,
which is deterministic for STA and time-randomized for SPTA and MBPTA.
The quantitative results (a qualitative comparison is also performed) of that
study show that STA performs better when the program fits in cache whereas
MBPTA gets better results when conflict misses arise.

[9] compares the requirements set by STA, SPTA and MBPTA on the pro-
cedure needed to obtain high-confidence WCET estimates for multicore proces-
sors. The cited work ranks those techniques according to the affordability of
satisfying their use requirements in industrial-use scenarios.

35



8.4 Certification

To support the penetration of MBPTA in the industrial practice of applica-
tion domains subject to rigorous qualification or certification, some reasoned
argument ought to be constructed to explain why the method is suitable. In-
terestingly, however, the question of how to construct an explicit argument for
the WCET problem in general lacks an established literature. Implicit argu-
mentations are more frequent, often in the form of underlying assumptions and
associated context vocabulary.

Industrial practice is normally very specific in the validation program that
development and verification methods alike have to undergo before being deemed
fit for use. In the face of standard prescriptions, fitness for use requires compli-
ance. The CAST guidelines [27] aim to help the certification authorities in the
avionics domain to understand what is being proposed as alternative means of
compliance: the objectives met, the rationale for using the alternative means, its
engineering and safety adequacy, without prescribing a way to generate or doc-
ument this information. A plausible argument pattern would map its objectives
to those of the applicable standard, showing that the method is trustworthy as
well as feasible to implement (for usability, automation or user competency).
To this very end, [108] constructs a model certification argument to instantiate
for specific validation programs, which follows an explicit argumentation ap-
proach that seeks maximum clarity in its claims, shows where probabilities and
confidence apply, and suggests how to transfer the argument between domains.

Another angle of interest in this regard arises with mixed-criticality systems,
which integrate applications at different safety assurance levels, into multicore
embedded platforms, in the hope of reaping performance, cost, size, weight, and
power benefits. When safety assurance is at stake, the pursuit of determinism at
all levels of execution behaviour is often perceived as a major factor of simplifi-
cation in the process of gathering the prescribed certification evidence [1]. Yet,
that determinism is compromised in most modern COTS multicore platforms,
where the quest for higher average performance is a far greater concern than
determinism. [11] shows that the use of MBPTA may fit, for compliance to do-
main regulations and resource efficacy, in the definition of a safety concept for
a mixed-criticality multicore system equipped with hardware protection mech-
anisms for use in the automotive domain. Regarding the compliance concern,
the authors report the positive independent assessment of that safety concept
by an independent certification body. For the efficacy concern, the cited work
shows how MBPTA helps mitigate the untenable pessimism that may arise from
the use of traditional WCET analysis or the (potentially unsound) addition of
conservative margins to the high water mark values obtained by observation.

[11]’s safety concept sees MBPTA as a competitive solution to prevent re-
source over-provisioning and ensure independence among mixed-criticality ap-
plications. The pseudo-random number generator plays a central role in pro-
cessors that support MBPTA. One interesting ramification of the certification-
enabling works cited in this section was to assess whether a design exists for
such a device that meets the safety requirements in IEC-61508 for no less than
SIL 3, and warrants seamless integration in a real-world multicore processor.
This concern was addressed in [10].

36



9 Conclusions and Outlook

9.1 Status

The unprecedented rise in guaranteed performance needs in critical real-time
embedded systems promotes the adoption of high-performance processors that
feature deep cache hierarchies and multicore execution even in otherwise conser-
vative industrial domains. While transitioning to complex hardware platforms
has been acknowledged as the only cost-effective manner to meet the emerging
performance requirements, it also pushes existing timing analysis techniques
to their limits, for complexity and effectiveness. In this context, probabilis-
tic/statistical timing analysis methods have recently emerged as a promising
paradigm to overcome the limitations of standard deterministic timing analysis
approaches and to deliver sustainable, reliable, and industrial-quality WCET
estimates. The rapid rise of interest in those techniques has motivated the
production of a vast body of literature in the state of the art. Unfortunately,
however, those works often have a very diverse range of goals and assumptions
that are difficult to tell apart, thus impeding a clear understanding of the pro-
posed problem-and-solution landscape.

This survey originates from the need to fill that gap, with particular focus
on the worst-case timing analysis of critical real-time systems. To this end, this
work covers the state of the art of probabilistic timing analyses, from their theo-
retical basis, to their evaluation and assessment against industrial applications.
The result shows that several, substantially different approaches were previously
collected under the indistinct umbrella of probabilistic timing analysis.

This work shows that much progress has been made towards the consoli-
dation of PTA, not only in foundational terms, but also to make it viable for
industrial use and to quantitatively and qualitatively assess the performance of
its solutions.

9.2 PTA Limitations and Research Directions

To conclude this survey, we single out directions of future work on PTA which
should help this research area to further its maturation and extend its reach
into broader acknowledgment and use.

Advancing SPTA Whereas the static and dynamic (measurement-based)
families of PTA techniques were born together and were seen as equally disrup-
tive, the largest proportion of the subsequent research efforts has concentrated
on the measurement-based variant.

As a consequence, SPTA does not seem to have reached yet the level of ma-
turity required to warrant low complexity of application and viable use prerequi-
sites. In that respect, the research on SPTA has large margins for improvement.
In order to maintain its attractiveness, it is desirable that further research effort
be directed to improve the computational complexity of SPTA and to extend it
to multi-level cache hierarchies and more realistic processor architectures.

Measurement-based Methods, Platform Requirements and Represen-
tativeness In contrast with SPTA, measurement-based methods have been
vastly investigated in the last few years, leading to the publication of diverse

37



approaches with different assumptions, procedures and degrees of formalization,
using statistical tools from Extreme Value Theory as a common trait of most
of them.

A clear distinction among MBPTA approaches derives from the assumptions
that they make on the hardware or software of the execution platform. Em-
ploying MBPTA (with EVT) on deterministic platforms, while not necessarily
antagonistic to the EVT hypotheses, challenges the provision of confirmatory
arguments, which afflicts measurement-based analysis domain for representa-
tiveness with respect to the coverage attained of program paths and execution
conditions. MBPTA-supportive platforms address this problem specifically, in
the form of real hardware implementation or software-level solutions, which al-
low the user to reason on representativeness in probabilistic terms. However,
most existing platforms lack adequate hardware support, while software-level
support has been shown to pose additional use challenges: these limitations
prevent applying those techniques to several current platforms and applications.

The applicability of EVT per se has also been questioned as it may not be
possible to derive satisfactory results on all classes of software programs. How
to intercept those situations and whether there exists an alternative approach to
circumvent them thus are interesting research questions to further investigate.

Industrialization Insisting on industrialization is a necessary driver for the
consolidation of PTA as the industrial concerns with the timing analysis prob-
lem were the origin to probabilistic approaches in the first place. Meeting the
certification requirements of the real-time critical domains is a mandatory pre-
requisite in this respect. This line of work has been already initiated for certi-
fiable railway applications and needs to be further extended to other industrial
domains.

Acknowledgements

This work has also been partially supported by the Spanish Ministry of Science
and Innovation under grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 772773), and the HiPEAC Network of Excellence.
Jaume Abella was partially supported by the Ministry of Economy and Com-
petitiveness under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).
Enrico Mezzetti has been partially supported by the Spanish Ministry of Econ-
omy and Competitiveness under Juan de la Cierva-Incorporación postdoctoral
fellowship number IJCI-2016-27396.

References

[1] Advanced Cockpit for Reduction Of Stress and Workload, 2013. http:

//www.across-fp7.eu/.

[2] QUALCOMM Snapdragon 820 Automotive Processor. https://www.

qualcomm.com/products/snapdragon/processors/820-automotive,
2016.

38



[3] RENESAS R-Car H3. https://www.renesas.com/en-us/solutions/

automotive/products/rcar-h3.html, 2016.

[4] NVIDIA DRIVE PX. Scalable supercomputer for autonomous driving.
http://www.nvidia.com/object/drive-px.html, 2017.

[5] H. Abarbanel, S. Koonin, H. Levine, G. MacDonald, and O. Rothaus.
Statistics of Extreme Events with Application to Climate. MITRE CORP
MCLEAN VA JASON PROGRAM OFFICE, 1992.

[6] J. Abella, D. Hardy, I. Puaut, E. Quiñones, and F.J. Cazorla. On the com-
parison of deterministic and probabilistic WCET estimation techniques.
In Euromicro Conference on Real-Time Systems, ECRTS, 2014.

[7] J. Abella, M. Padilla, J. Del Castillo, and F.J. Cazorla. Measurement-
based worst-case execution time estimation using the coefficient of vari-
ation. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 2(4), 2017.

[8] J. Abella, E. Quiñones, F. Wartel, T. Vardanega, and F. J. Cazorla. Heart
of gold: Making the improbable happen to increase confidence in MBPTA.
In Euromicro Conf. on Real-Time Systems ECRTS, 2014.

[9] Jaume Abella, Carles Hernández, Eduardo Quiñones, Francisco J. Ca-
zorla, Philippa Ryan Conmy, Mikel Azkarate-askasua, Jon Perez, Enrico
Mezzetti, and Tullio Vardanega. WCET analysis methods: Pitfalls and
challenges on their trustworthiness. In 10th IEEE International Sympo-
sium on Industrial Embedded Systems, SIES, 2015.

[10] I. Agirre, M. Azkarate-askasua, C. Hernández, J. Abella, J. Perez, T. Var-
danega, and F.J. Cazorla. IEC-61508 SIL 3 compliant pseudo-random
number generators for probabilistic timing analysis. In 2015 Euromicro
Conference on Digital System Design, DSD, 2015.

[11] I. Agirre, M. Azkarate-askasua, A. Larrucea, J. Perez, T. Vardanega, and
F.J. Cazorla. Automotive safety concept definition for mixed-criticality
integration on a COTS multicore. In Computer Safety, Reliability, and
Security - SAFECOMP Workshops, ASSURE, DECSoS, SASSUR, and
TIPS, 2016.

[12] B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing
based on latency-rate servers. In 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, DSD, 2009.

[13] M.A. Alam, K.Roy, and C. Augustine. Reliability -and process-variation
aware design of integrated circuits. In Reliability Physics Symposium
(IRPS), 2011.

[14] S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. Static probabilistic timing
analysis for real-time systems using random replacement caches. Real-
Time Systems, 51(1), 2015.

[15] Sebastian Altmeyer and Robert I. Davis. On the correctness, optimality
and precision of static probabilistic timing analysis. In Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE, 2014.

39



[16] H. Anwar, C. Chen, and G. Beltrame. A probabilistically analysable cache
implementation on FPGA. In International New Circuits and Systems
Conference, NEWCAS, 2015.

[17] ARM. ARM Expects Vehicle Compute Performance
to Increase 100x in Next Decade. Technical re-
port, ARM. https://www.arm.com/about/newsroom/

arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.

php, 2015.

[18] P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella, and F.J. Cazorla. A
confidence assessment of WCET estimates for software time randomized
caches. In Int. Conf. on Industrial Informatics, INDIN, 2016.

[19] P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella, and F.J. Cazorla. Mod-
elling the confidence of timing analysis for time randomised caches. In
Symposium on Industrial Embedded Systems, SIES, 2016.

[20] G. Benktander and C.O. Segerdahl. On the analytical representation of
claim distributions with special reference to excess of loss reinsurance. In
XVIth International Congress of Actuaries, Brussels, 1960.

[21] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar. WCET
Measurement-based and Extreme Value Theory Characterisation of
CUDA Kernels. In Conf. on Real-Time Networks and Systems, RTNS,
2014.

[22] G. Bernat, A. Colin, and S.M. Petters. WCET analysis of probabilistic
hard real-time system. In Real-Time Systems Symposium RTSS, 2002.

[23] F. Bodin and A. Seznec. Skewed associativity improves program perfor-
mance and enhances predictability. IEEE Transactions on Computers,
46(5), 1997.

[24] A. Burns, G. Bernat, and I. Broster. A probabilistic framework for schedu-
lability analysis. In Rajeev Alur and Insup Lee, editors, Embedded Soft-
ware, pages 1–15, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[25] F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella. Upper-bounding
program execution time with extreme value theory. In 13th International
Workshop on Worst-Case Execution Time Analysis, WCET, 2013.

[26] F.J. Cazorla et al. PROARTIS: probabilistically analyzable real-time sys-
tems. ACM Trans. Embedded Comput. Syst., 12(2s), 2013.

[27] Certification Authorities Software Team. CAST-32A Multi-core Proces-
sors, 2016.

[28] J.M. Chambers. Graphical Methods for Data Analysis. Wadsworth, Bel-
mont, CA, 1983.

[29] Robert N. Charette. This car runs on code. In IEEE Spectrum
(online), 2009. http://spectrum.ieee.org/transportation/systems/
this-car-runs-on-code.

40



[30] C. Chen, J. Panerati, and G. Beltrame. Effects of online fault detection
mechanisms on probabilistic timing analysis. In Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems, DFT, 2016.

[31] C. Chen, L. Santinelli, J. Hugues, and G. Beltrame. Static probabilistic
timing analysis in presence of faults. In Symposium on Industrial Embed-
ded Systems, SIES, 2016.

[32] S. Coles. An Introduction to Statistical Modeling of Extreme Values.
Springer, 2001.

[33] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster, and
F.J. Cazorla. Dynamic software randomisation: Lessons learned from an
aerospace case study. In Design, Automation & Test in Europe Conference
& Exhibition, DATE, 2017.

[34] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F.J. Cazorla.
Measurement-based probabilistic timing analysis for multi-path programs.
In Euromicro Conference on Real-Time Systems ECRTS, 2012.

[35] L. David and I. Puaut. Static determination of probabilistic execution
times. In Euromicro Conference on Real-Time Systems ECRTS, 2004.

[36] Robert I. Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and
Liliana Cucu-Grosjean. Analysis of probabilistic cache related pre-emption
delays. In Euromicro Conference on Real-Time Systems ECRTS, 2013.

[37] J.T. de Oliveira. Statistical extremes and applications. In NATO ASI
Series, Mathematical and Physical Sciences, Vol 131. Springer, 1984.

[38] J. del Castillo and M. Padilla. Modelling extreme values by the residual
coefficient of variation. Statistics and Operations Research Transactions
(SORT), 40(2):303–320, 2016. ISSN 1696-2281.

[39] F. Despaux, Y. Song, and A. Lahmadi. Extracting markov chain models
from protocol execution traces for end to end delay evaluation in wire-
less sensor networks. In World Conference on Factory Communication
Systems, WFCS, 2015.

[40] E. Diaz, M. Fernandez, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella,
and F.J. Cazorla. Mc2: Multicore and cache analysis via deterministic and
probabilistic jitter bounding. In Ada Europe, 22nd International Confer-
ence on Reliable Software Technologies, 2017.

[41] J. Diebolt, M. Garrido, and S. Girard. A Goodness-of-fit Test for the Dis-
tribution Tail. In M. Ahsanullah and S.N.U.A. Kirmani, editors, Topics in
Extreme Values, (Chapter 5). Nova Science, New-York, September 2007.

[42] M. Duranton, K. De Bosschere, C. Gamrat, J. Maebe, H. Munk, and
O. Zendra. HiPEAC Vision 2017, 2017.

[43] Daniel L. Dvorak. NASA study on flight software complexity. Final report.
Technical report, NASA, 2009.

41



[44] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In
Real-Time Systems Symposium (RTSS), 2001.

[45] P. Embrechts, T. Mikosch, and C. Klüppelberg. Modelling Extremal
Events: For Insurance and Finance. Springer-Verlag, London, UK, UK,
1997.

[46] E.S. Epstein. A scoring system for probability forecasts of ranked cate-
gories. Journal of Applied Meteorology, 8(6), 1969.

[47] Rolf Ernst and Marco Di Natale. Mixed criticality systems - A history of
misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[48] M. Fernández, D. Morales, L. Kosmidis, A. Bardizbanyan, I. Broster,
C. Hernández, E. Quiñones, J. Abella, F.J. Cazorla, P. Machado, and
L. Fossati. Probabilistic timing analysis on time-randomized platforms
for the space domain. In Design, Automation & Test in Europe Conf. &
Exhibition, DATE, 2017.

[49] R.A. Fisher and L.H.. Tippett. Limiting forms of the frequency distribu-
tion of the largest or smallest member of a sample. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 24(2), 1928.

[50] Patrick J. Graydon and Iain Bate. Realistic safety cases for the timing of
systems. Comput. J., 57(5), 2014.

[51] D. Griffin and A. Burns. Realism in Statistical Analysis of Worst Case Ex-
ecution Times. In 10th International Workshop on Worst-Case Execution
Time Analysis, WCET, 2010.

[52] D. Griffin, B. Lesage, A. Burns, and R.I. Davis. Static probabilistic timing
analysis of random replacement caches using lossy compression. In Inter-
national Conference on Real-Time Networks and Systems, RTNS, 2014.

[53] F. Guet, L. Santinelli, and J. Morio. On the Reliability of the Probabilistic
Worst-Case Execution Time Estimates. In 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), 2016.

[54] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
mälardalen wcet benchmarks - past, present and future. In Proceedings of
the 10th International Workshop on Worst-Case Execution Time Analy-
sis, 2010.

[55] J.P. Hansen, S.A. Hissam, and G.A. Moreno. Statistical-based wcet es-
timation and validation. In Workshop on Worst-Case Execution Time
(WCET) Analysis, 2009.

[56] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-
associative instruction caches. In Proceedings of the 29th IEEE Real-Time
Systems Symposium, RTSS, 2008.

[57] D. Hardy and I. Puaut. Static probabilistic worst case execution time
estimation for architectures with faulty instruction caches. Real-Time
Systems, 51(2), 2015.

42



[58] D. Hardy, I. Puaut, and Y. Sazeides. Probabilistic wcet estimation in
presence of hardware for mitigating the impact of permanent faults. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2016.

[59] Carles Hernández, Jaume Abella, Andrea Gianarro, Jan Andersson, and
Francisco J. Cazorla. Random modulo: a new processor cache design for
real-time critical systems. In Design Automation Conference, DAC, 2016.

[60] K. Höfig. Failure-Dependent Timing Analysis - A New Methodology for
Probabilistic Worst-Case Execution Time Analysis, pages 61–75. Springer
Berlin Heidelberg, 2012.

[61] Intel. Intel GO Automated Driving Solution Product Brief.
https://www.intel.es/content/dam/www/public/us/en/documents/

platform-briefs/go-automated-accelerated-product-brief.pdf,
2016.

[62] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[63] Javier Jalle, Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and
Francisco J. Cazorla. Bus designs for time-probabilistic multicore proces-
sors. In Design, Automation & Test in Europe Conference & Exhibition,
DATE, 2014.

[64] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. A cache design
for probabilistically analysable real-time systems. In Design, Automation
and Test in Europe, DATE, 2013.

[65] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. Efficient cache
designs for probabilistically analysable real-time systems. volume 63, 2014.

[66] L. Kosmidis, J. Abella, F. Wartel, E. Quiñones, A. Colin, and F.J. Cazorla.
Pub: Path upper-bounding for measurement-based probabilistic timing
analysis. In Euromicro Conference on Real-Time Systems ECRTS, 2014.

[67] L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Quiñones,
J. Abella, T. Vardanega, and F.J. Cazorla. Measurement-based timing
analysis of the AURIX caches. In 16th International Workshop on Worst-
Case Execution Time Analysis, WCET, 2016.

[68] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E.D. Berger, and F.J.
Cazorla. Probabilistic timing analysis on conventional cache designs. In
Design, Automation and Test in Europe, DATE, 2013.

[69] L. Kosmidis, E. Quiñones, J. Abella, G. Farrall, F. Wartel, and F.J. Ca-
zorla. Containing timing-related certification cost in automotive systems
deploying complex hardware. In Design Automation Conference DAC,
2014.

[70] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, I. Broster, and F.J.
Cazorla. Measurement-based probabilistic timing analysis and its impact
on processor architecture. In Euromicro Conference on Digital System
Design, DSD, 2014.

43



[71] Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J.
Cazorla. Multi-level unified caches for probabilistically time analysable
real-time systems. In Real-Time Systems Symposium, RTSS, 2013.

[72] Leonidas Kosmidis, Eduardo Quiñones, Jaume Abella, Tullio Var-
danega, and Francisco J. Cazorla. Achieving timing composability with
measurement-based probabilistic timing analysis. In ISORC. IEEE Com-
puter Society, 2013.

[73] S. Kotz and S. Nadarajah. Extreme value distributions: theory and appli-
cations. World Scientific, 2000.

[74] Kanishka Lahiri, Anand Raghunathan, and Ganesh Lakshminarayana.
The LOTTERYBUS on-chip communication architecture. volume 14,
2006.

[75] Stephen Law and Iain Bate. Achieving appropriate test coverage for re-
liable measurement-based timing analysis. In Euromicro Conference on
Real-Time Systems ECRTS, 2016.

[76] B. Lesage, D. Griffin, F. Soboczenski, I. Bate, and R.I. Davis. A framework
for the evaluation of measurement-based timing analyses. In Real Time
and Networks Systems RTNS, 2015.

[77] Benjamin Lesage, David Griffin, Sebastian Altmeyer, and Robert I. Davis.
Static probabilistic timing analysis for multi-path programs. In 2015 IEEE
Real-Time Systems Symposium, RTSS, 2015.

[78] G. Lima and I. Bate. Valid application of EVT in timing analysis by
randomising execution time measurements. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[79] G. Lima, D. Dias, and E. Barros. Extreme value theory for estimating
task execution time bounds: A careful look. In Euromicro Conference on
Real-Time Systems, ECRTS, 2016.

[80] José Maŕıa López, José Luis Dı́az, Joaqúın Entrialgo, and Daniel Garćıa.
Stochastic analysis of real-time systems under preemptive priority-driven
scheduling. Real-Time Systems, 40(2), 2008.

[81] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A new way about using
statistical analysis of worst-case execution times. SIGBED Review, 8(3),
2011.

[82] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A statistical response-
time analysis of real-time embedded systems. In 33rd Real-Time Systems
Symposium, 2012.

[83] C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae, L. Cucu-Grosjean, and
W. Talaboulma. Reproducibility and representativity - mandatory prop-
erties for the compositionality of measurement-based WCET estimation
approaches. In 9th International Workshop on Compositional Theory and
Technology for Real-Time Embedded System (CRTS2016), 2016.

44



[84] Dorin Maxim, Mike Houston, Luca Santinelli, Guillem Bernat, Robert I.
Davis, and Liliana Cucu-Grosjean. Re-sampling for statistical timing anal-
ysis of real-time systems. In Real-Time and Network Systems, RTNS,
2012.

[85] A. Melani, E. Noulard, and L. Santinelli. Learning from probabilities:
Dependences within real-time systems. In Emerging Technologies Factory
Automation, ETFA, 2013.

[86] E. Mezzetti, N. Holsti, A. Colin, G. Bernat, and T. Vardanega. Attacking
the sources of unpredictability in the instruction cache behavior. In Real-
Time and Network Systems (RTNS), 2008.

[87] Enrico Mezzetti and Tullio Vardanega. A rapid cache-aware procedure
positioning optimization to favor incremental development. In Real-Time
and Embedded Technology and Applications Symposium, RTAS, 2013.

[88] Enrico Mezzetti, Marco Ziccardi, Tullio Vardanega, Jaume Abella, Ed-
uardo Quiñones, and Francisco J. Cazorla. Randomized caches can be
pretty useful to hard real-time systems. LITES, 2(1), 2015.

[89] S. Milutinovic, J. Abella, I. Agirre, M. Azkarate-Askasua, E. Mezzetti,
T. Vardanega, and F.J. Cazorla. Software time reliability in the presence
of cache memories. In Ada Europe, 22nd International Conference on
Reliable Software Technologies, 2017.

[90] S. Milutinovic, J. Abella, and F.J. Cazorla. Modelling probabilistic cache
representativeness in the presence of arbitrary access patterns. In 19th
IEEE International Symposium on Real-Time Distributed Computing,
ISORC, 2016.

[91] S. Milutinovic, E. Mezzetti, J. Abella, T. Vardanega, and F.J. Cazorla.
On uses of extreme value theory fit for industrial-quality WCET analysis.
In Symposium on Industrial Embedded Systems (SIES), 2017.

[92] Suzana Milutinovic, Jaume Abella, Damien Hardy, Eduardo Quiñones,
Isabelle Puaut, and Francisco J. Cazorla. Speeding up static probabilistic
timing analysis. In Architecture of Computing Systems - ARCS, 2015.

[93] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement. In Euromicro Conference on Real-
Time Systems, 2014.

[94] M. Panic, J. Abella, C. Hernández, E. Quiñones, T. Ungerer, and F.J.
Cazorla. Enabling TDMA arbitration in the context of MBPTA. In Eu-
romicro Conference on Digital System Design, DSD, 2015.

[95] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat,
and Mateo Valero. Hardware support for WCET analysis of hard real-time
multicore systems. In International Symposium on Computer Architecture
(ISCA, 2009.

45



[96] K. Pearson. X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. Philo-
sophical Magazine, 50(302):157–175, 1900.

[97] J. Pickands. Statistical inference using extreme order statistics. The An-
nals of Statistics, 3(1):119–131, 1975.

[98] Jason Poovey et al. Characterization of the EEMBC Benchmark Suite.
North Carolina State University, 2007.

[99] E. Quiñones, E.D. Berger, G. Bernat, and F.J. Cazorla. Using randomized
caches in probabilistic real-time systems. In Euromicro Conference on
Real-Time Systems, ECRTS, 2009.

[100] Khaled S. Refaat and Pierre-Emmanuel Hladik. Efficient stochastic anal-
ysis of real-time systems via random sampling. In Euromicro Conference
on Real-Time Systems, ECRTS, 2010.

[101] Jan Reineke. Randomized caches considered harmful in hard real-time
systems. LITES, 1(1), 2014.

[102] L. Santinelli, F. Guet, and J. Morio. Revising measurement-based prob-
abilistic timing analysis. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2017.

[103] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart. On the Sustain-
ability of the Extreme Value Theory for WCET Estimation. In 14th Inter-
national Workshop on Worst-Case Execution Time Analysis, volume 39,
2014.

[104] M. Schlansker, R. Shaw, and S. Sivaramakrishnan. Randomization and as-
sociativity in the design of placement-insensitive caches. Technical report,
HP Report, HPL-93-41, 1993.

[105] M. Slijepcevic, M. Fernández, C. Hernández, J. Abella, E. Quiñones, and
F.J. Cazorla. ptnoc: Probabilistically time-analyzable tree-based noc for
mixed-criticality systems. In Euromicro Conference on Digital System
Design, 2016.

[106] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F.J. Cazorla.
Time-analysable non-partitioned shared caches for real-time multicore sys-
tems. In Design Automation Conference DAC, 2014.

[107] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F.J. Cazorla.
Timing verification of fault-tolerant chips for safety-critical applications
in harsh environments. IEEE Micro, 34(6), 2014.

[108] Z.R. Stephenson, J. Abella, and T. Vardanega. Supporting industrial use
of probabilistic timing analysis with explicit argumentation. In 11th IEEE
International Conference on Industrial Informatics, INDIN, 2013.

[109] N. Topham and A. Gonzalez. Randomized cache placement for eliminating
conflicts. IEEE Transactions on Computers, 48(2), 1999.

46



[110] B. Villalba Frias, L. Palopoli, L. Abeni, and D. Fontanelli. Probabilistic
real-time guarantees: There is life beyond the i.i.d. assumption. In Real-
Time and Embedded Technology and Applications Symposium, RTAS,
2017.

[111] F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z.R. Stephenson, B. Tri-
quet, E. Quiñones, C. Lo, E. Mezzetti, I. Broster, J. Abella, L. Cucu-
Grosjean, T. Vardanega, and F.J. Cazorla. Timing analysis of an avionics
case study on complex hardware/software platforms. In Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE, 2015.

[112] Reinhard Wilhelm. et al. The worst-case execution time problem:
overview of methods and survey of tools. ACM TECS, 7(3), 2008.

[113] S. Zhou. An Efficient Simulation Algorithm for Cache of Random Re-
placement Policy. Springer Berlin Heidelberg, 2010.

[114] M. Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, and F.J. Cazorla. EPC:
extended path coverage for measurement-based probabilistic timing anal-
ysis. In Real-Time Systems Symposium, RTSS, 2015.

47


