51 research outputs found
Spectral Sensitivity, Spatial Resolution and Temporal Resolution and Their Implications for Conspecific Signalling in Cleaner Shrimp
Cleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis,Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean±s.e.m.) 518±5, 518±2 and 533±3â
nm, respectively. Temporal resolution in dark-adapted eyes was 39±1.3, 36±0.6 and 34±1.3â
Hz. Spatial resolution was 9.9±0.3, 8.3±0.1 and 11±0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity
Hosts of avian brood parasites have evolved egg signatures with elevated information content.
Hosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg 'signatures'), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive 'signatures' by arranging suites of egg traits into unpredictable combinations.EMC was supported by the Pomona College-Downing College Student Exchange Scholarship, MS by a BBSRC David Phillips Research Fellowship (BB/G022887/1), and CNS by a Royal Society Dorothy Hodgkin Fellowship, a BBSRC David Phillips Research Fellowship (BB/J014109/1), and the DST-NRF Centre of Excellence at the Percy FitzPatrick Institute.This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rspb.2015.059
Spectral Sensitivity in Ray-Finned Fishes: Diversity, Ecology and Shared Descent
A major goal of sensory ecology is to identify factors that underlie sensory-trait variation. One open question centers on why fishes show the greatest diversity among vertebrates in their capacity to detect color (i.e. spectral sensitivity). Over the past several decades, λmax values (photoreceptor class peak sensitivity) and chromacy (photoreceptor class number) have been cataloged for hundreds of fish species, yet the ecological basis of this diversity and the functional significance of high chromacy levels (e.g. tetra- and pentachromacy) remain unclear. In this study, we examined phylogenetic, physiological and ecological patterns of spectral sensitivity of ray-finned fishes (Actinoptergyii) via a meta-analysis of data compiled from 213 species. Across the fishes sampled, our results indicate that trichromacy is most common, ultraviolet λmax values are not found in monochromatic or dichromatic species, and increasing chromacy, including from tetra- to pentachromacy, significantly increases spectral sensitivity range. In an ecological analysis, multivariate phylogenetic latent liability modeling was performed to analyze correlations between chromacy and five hypothesized predictors (depth, habitat, diet, body coloration, body size). In a model not accounting for phylogenetic relatedness, each predictor with the exception of habitat significantly correlated with chromacy: a positive relationship in body color and negative relationships with body size, diet and depth. However, after phylogenetic correction, the only remaining correlated predictor was depth. The findings of this study indicate that phyletic heritage and depth are important factors in fish spectral sensitivity and impart caution about excluding phylogenetic comparative methods in studies of sensory trait variation
Hosts elevate either within-clutch consistency or between-clutch distinctiveness of egg phenotypes in defence against brood parasites
In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed. Here, we attempt to resolve this puzzle by partitioning distinctiveness according to how it is achieved: (i) greater variation within each trait, contributing to elevated 'absolute distinctiveness' or (ii) combining phenotypic traits in unpredictable combinations ('combinatorial distinctiveness'). We tested how consistency covaries with each type of distinctiveness by measuring variation in egg colour and pattern in two African bird families (Cisticolidae and Ploceidae) that experience mimetic brood parasitism. Contrary to predictions, parasitized species, but not unparasitized species, exhibited a negative relationship between consistency and combinatorial distinctiveness. Moreover, regardless of parasitism status, consistency was negatively correlated with absolute distinctiveness across species. Together, these results suggest that (i) selection from parasites acts on how traits combine rather than absolute variation in traits, (ii) consistency and distinctiveness are alternative rather than complementary elements of signatures and (iii) mechanistic constraints may explain the negative relationship between consistency and absolute distinctiveness across species.Peer reviewe
Why and how to apply Weber's Law to coevolution and mimicry
Abstract: In mimicry systems, receivers discriminate between the stimuli of models and mimics. Weber's Law of proportional processing states that receiver discrimination is based on proportional, not absolute, differences between stimuli. Weber's Law operates in a variety of taxa and modalities, yet it has largely been ignored in the context of mimicry, despite its potential relevance to whether receivers can discriminate models from mimics. Specifically, Weber's Law implies that for a given difference in stimulus magnitude between a model and mimic, as stimulus magnitudes increase, the mimic will be less discriminable from their model. This implies that mimics should benefit when stimulus magnitudes are high, and that high stimulus magnitudes will reduce selection for mimetic fidelity. Whether models benefit from high stimulus magnitudes depends on whether mimicry is honest or deceptive. We present four testable predictions about evolutionary trajectories of models and mimics based on this logic. We then provide a framework for testing whether receiver discrimination adheres to Weber's Law and illustrate it using coevolutionary examples and case studies from avian brood parasitism. We conclude that, when studying mimicry systems, researchers should consider whether receiver perception conforms to Weber's Law, because it could drive stimulus evolution in counterintuitive directions
A customizable, low-cost optomotor apparatus: a powerful tool for behaviourally measuring visual capability
This is the final version. Available on open access from Wiley via the DOI in this recordData Accessibility:
A full parts list, 3D models, assembly instructions, and microcontroller code are provided under
Creative Commons license at the GitHub repository (https://github.com/troscianko/optomotor)
(DOI: 10.5281/zenodo.3840063) and as supplementary material. Construction guide, video
guide, user forum, and future updates are provided here:
http://www.empiricalimaging.com/optomotor/.1. Vision is the dominant sense for many animals, and there is an enormous diversity in
visual capabilities. Understanding the visual abilities of a given species can therefore be
key for investigating its behaviour and evolution. However, many techniques for
quantifying visual capability are expensive, require specialized equipment, or are
terminal for the animal.
2. Here, we discuss how to measure the optomotor (or optokinetic) response, an innate
response that can be elicited without any training in a wide range of taxa, and which is
quantifiable, accessible, and non-invasive, and provide guidance for carrying out
optomotor experiments.
3. We provide instructions for building a customizable, programmable optomotor
apparatus using 3D-printed and low-cost materials, discuss experimental design
considerations for optomotor assays, include a guide that calculates the dimensions of
stimuli of varying spatial frequency, and provide a table summarizing experimental
parameters in prior optomotor experiments across a range of species.
4. Ultimately, making this simple technique more accessible will allow more researchers to
incorporate measures of visual capability into their work. Additionally, the low cost and
ease of construction of our apparatus will allow educators in a variety of settings to
include optomotor assays in classroom activities or demonstrations. Although here we
focus on using optomotor to measure visual acuityâthe ability to perceive detailâthe
apparatus and stimuli described here can be adapted to measure visual capabilities
including spectral, contrast, and polarization sensitivity, as well as motion detection,
among others.European Union Horizon 2020Natural Environment Research Council (NERC)Royal Societ
- âŠ