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Inmimicry systems, receivers discriminate between the stimuli ofmodels andmimics.Weber’s Law of proportional processing states

that receiver discrimination is based on proportional, not absolute, differences between stimuli. Weber’s Law operates in a variety

of taxa andmodalities, yet it has largely been ignored in the context of mimicry, despite its potential relevance towhether receivers

can discriminate models from mimics. Specifically, Weber’s Law implies that for a given difference in stimulus magnitude between

a model and mimic, as stimulus magnitudes increase, the mimic will be less discriminable from their model. This implies that mimics

should benefit when stimulus magnitudes are high, and that high stimulus magnitudes will reduce selection for mimetic fidelity.

Whether models benefit from high stimulus magnitudes depends on whether mimicry is honest or deceptive. We present four

testable predictions about evolutionary trajectories of models and mimics based on this logic. We then provide a framework for

testing whether receiver discrimination adheres to Weber’s Law and illustrate it using coevolutionary examples and case studies

from avian brood parasitism. We conclude that, when studying mimicry systems, researchers should consider whether receiver

perception conforms to Weber’s Law, because it could drive stimulus evolution in counterintuitive directions.

KEY WORDS: Avian brood parasitism, coevolution, mimicry, proportional processing, receiver perception, stimulus magnitude.

Imagine that you are a bird and must identify a parasitic egg in

your nest, as hosts of cuckoos or other brood parasites might do.

The brood parasite lays eggs that closely mimic your own, differ-

ing only by having an extra spot compared to your own spotted

eggs. As illustrated in Figure 1, having more spots on your own

eggs makes it harder to recognize the parasitic egg, even though

in both scenarios the absolute difference in degree of spottiness

between your eggs and the parasitic egg is the same.

This example illustrates Weber’s Law (Fechner 1966; Weber

1834), a principle of receiver perception that states that stimuli

are processed proportionally rather than being compared in abso-

lute terms. As Figure 1 shows, it is not the absolute difference be-

tween the number of spots on the host eggs and the parasitic egg

that affects our judgment of the difference, as for both clutches

this difference is one spot. Instead, we process the relative dif-

ference, known as “proportional processing.” For the clutch with

five spots per egg (Fig. 1B), the relative difference in number of

spots between host and parasitic eggs is 1
5 , whereas for the clutch

with 20 spots per egg (Fig. 1A), it is only 1
20 . The higher magni-

tude of the stimulus in the latter case (more spots per egg) results

in the same absolute difference in pattern between parasitic egg

and host eggs being less noticeable. If, such as humans, hosts

also process relative differences in spot number, then they benefit

when their eggs have few spots, whereas parasites benefit when
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Figure 1. Two clutches of three host eggs and a parasitic egg. In each case, the parasitic egg (on the right in each clutch) has one more

spot than each host egg. It is harder to identify the parasitic egg in panel A than in panel B, because the number of spots on each egg is

higher in panel A. The parasite therefore benefits from situation (A), whereas the host benefits from situation (B). This is an illustration

of Weber’s Law, which states that differences between stimuli are less discriminable as stimulus magnitudes increase.

both host and parasitic eggs have many spots (Fig. 1A; see also

Section 1). Rather than simply being a quirk of receiver percep-

tion, therefore, Weber’s Law can have important consequences

for the optimal strategies that natural selection should favor, and

by extension the evolutionary trajectories of co-evolving species,

as we will discuss in this article.

Strictly, Weber’s Law states that the just noticeable differ-

ence (JND; the smallest change to a stimulus that is detectable)

increases as the magnitude of a stimulus increases. This can be

mathematically defined as

�I

I
= k, (1)

where �I is the minimum change or difference (the “stimulus

difference”) required to discriminate a stimulus of magnitude I

(the “stimulus magnitude”) from a stimulus of magnitude I + �I,

and k is a constant (Fechner 1966; Gibbon 1977; eq. 1)

Such proportional, or nonlinear, processing may take other

forms, such that the qualitative statement that “discriminabil-

ity declines as stimulus magnitude increases” remains true, yet

discriminability differs slightly from the precise relationship de-

scribed by equation 1. This is true for the so-called “near-miss” to

Weber’s Law (where discriminability declines less sharply with

stimulus magnitude than under Weber’s Law; Augustin 2009;

Guilford 1932; Nachev et al. 2013; Osman et al. 1980) and the

“opposite-miss” to Weber’s Law (where discriminability declines

more sharply with stimulus magnitude than under Weber’s Law;

LaBarbera et al. 2020). Therefore, any effect on reduced discrim-

inability of an increase in stimulus magnitudes will be stronger

than Weber’s Law under an opposite-miss scenario, and weaker

than Weber’s Law under a near-miss scenario. For clarity, we

specifically discuss Weber’s Law in this article; however, our ar-

guments should be considered to apply to proportional process-

ing (including the near-miss and opposite-miss scenarios) more

broadly. We therefore use the terms “Weber’s Law” and “propor-

tional processing” interchangeably.

In a biological context, many behaviors fundamental to ecol-

ogy and evolution involve discrimination between stimuli of the

same type but differing in magnitude. There is evidence from

a wide variety of taxa and ecological contexts that receivers

discriminate such differences relative to the stimulus magni-

tude, perhaps because of how sensory cells convey information,

and such that discrimination adheres to Weber’s Law (Akre &

Johnsen 2014). For example, discrimination between mating sig-

nals in frogs and prey cues in bats (Akre et al. 2011), group sizes

in fish (Gómez-Laplaza & Gerlai 2011), quantities of food in coy-

otes (Baker et al. 2011), and pheromone concentrations in ants

(Perna et al. 2012) have all been shown to follow Weber’s Law.

Weber’s Law has also been explicitly incorporated into theories

of group living, playing a role in group stability, social interac-

tions, and group decision-making (Mann & Garnett 2015; Perna

et al. 2019; Reina et al. 2018). Proportional processing by re-

ceivers can also influence the evolution of stimulus magnitudes.

For example, lower quality or lower quantity floral nectars evolve

when pollinating bats proportionally process quality or quantity,

because bats are less able to discriminate quality or quantity as

the magnitudes of these stimuli increase (Nachev et al. 2017).

Similarly, Weber’s Law has been suggested to limit the evolu-

tion of signals used in mate choice: because higher magnitude

stimuli are more difficult to discriminate, larger or more elabo-

rate male signals may have diminishing benefits in terms of at-

tracting females (Akre et al. 2011; Akre & Johnsen 2014; Cohen

1984). This could result in selection for new signals to attract fe-

males (Akre & Johnsen 2014). Here, we extend this application of

2 EVOLUTION 2021



PERSPECTIVE

Weber’s Law to signal evolution by considering signaling in co-

evolutionary interactions.

Despite its broad significance, Weber’s law has not yet been

explicitly incorporated into theoretical and empirical work on co-

evolution or mimicry (but see Speed 1999). Many coevolution-

ary systems, including parasite-host, predator-prey, and brood

parasite-host systems, involve receivers discriminating mimics

from models by detecting differences in the magnitude of stimuli

(Malcolm 1990), as illustrated by the example in Figure 1. Such

systems are ideal for studying evolutionary consequences of We-

ber’s Law, because receiver perception modulates selection on

signals of mimics and their models (Guilford & Dawkins 1991).

Many theoretical frameworks used in modelling the evolution of

mimicry, such as signal detection theory, do not incorporate rel-

ative differences between the stimuli of models and mimics, but

instead tend to focus solely on absolute differences (Oaten et al.

1975; Speed & Ruxton 2010). In doing so, they may overlook

effects of Weber’s Law.

Here, we discuss how Weber’s Law applies to mimicry sys-

tems. Specifically, we outline four testable predictions describ-

ing how Weber’s Law could affect the (co-)evolutionary trajec-

tories of mimicry systems, with these effects depending in part

on whether mimicry is honest or deceptive. We then propose a

framework for testing whether receiver discrimination follows

Weber’s Law, and highlight common pitfalls to avoid. Through-

out, we illustrate our arguments with examples, focusing particu-

larly on avian brood parasite-host systems. These provide excel-

lent case studies for discussing how to test Weber’s Law, as we

outline in the second half of this article.

Box 1. Definitions
Coevolution: A process in which pairs or groups of inter-

acting species or populations reciprocally affect each other’s

evolution.

Cue: A structure or behavior that elicits a response in

an unintended receiver; in contrast to signals, cues have not

evolved under selection for this function.

Detection: The process of noticing the presence or ab-

sence of an object or the occurrence of an event. This can oc-

cur alongside recognition; for example, recognition of which

specific object is the odd one out.

Discrimination: The process of distinguishing (by de-
tection or recognition) different stimuli of the same type.

Just Noticeable Difference (JND): The smallest stimu-
lus difference that can be discriminated.

Numerosity: The quantity of a specific entity. This is al-

ways a positive integer.

Receiver: An organism that processes and responds to a

cue or signal.

Recognition: The identification, by discrimination, of a

specific object.

Signal: A structure or behavior that has evolved under

selection to elicit a response in a receiver.

Stimulus: A signal or cue processed by a sensory system

of a receiver, which causes the receiver to respond in some

salient way.

Stimulus difference: The difference in magnitude be-

tween two stimuli of the same type.

Stimulus magnitude: The size of a stimulus. Stimulus

magnitudes are non-negative and must include zero.

Section 1: Implications of Weber’s
Law for mimicry systems
HONEST VERSUS DECEPTIVE MIMICRY

Many coevolutionary systems involve mimics evolving to resem-

ble models. Mimicry systems can be divided into two general

types: honest and deceptive, depending on the type of informa-

tion signaled to a receiver (reviewed by Jamie 2017).

Honest mimicry is defined as mimicry in which the mimic

honestly signals information to the receiver. In Müllerian
mimicry, a fitness cost is honestly signaled to the receiver. This

includes systems in which multiple unpalatable species evolve

to resemble each other, because they benefit from the increased

efficiency of predator learning (Sherratt 2008). For example,

apheloriine millipedes honestly signal their toxicity to predators

through aposematic coloration (Fig. 2A, B), with several species

evolving to resemble each other (Marek & Bond 2009). In re-
warding mimicry, a fitness benefit is honestly signaled to a re-

ceiver. For example, multiple plants with nectar rewards may

evolve to resemble each other because this facilitates attraction

of pollinators (Fig. 2C, D; Benitez-Vieyra et al. 2007; Jamie

2017; Schaefer & Ruxton 2009; Coetzee et al. 2021). In hon-

est mimicry, the model may in turn evolve a similar phenotype

to the mimic (Balogh & Leimar 2005; Chouteau et al. 2011;

Holmgren & Enquist 1999; Sherratt 2008; but see Benitez-Vieyra

et al. 2007; Mallet 1999), and the distinctions between “model”

and “mimic” may become blurred as both evolve to resemble the

other.

Deceptive mimicry is defined as mimicry in which the mimic

deceptively signals information to the receiver. In aggressive
mimicry, a mimic advertises greater benefits than it provides to a

receiver, by deceptively copying stimuli that convey these bene-

fits (e.g., the presence of offspring or food). Aggressive mimicry

systems include brood parasite-host systems, where parasites de-

ceptively signal the presence of host offspring, often by mim-

icking egg phenotypes of their hosts (Fig. 2E, F). The model

suffers costs from being mimicked, due to the erosion of sig-

nal reliability, and costs of being parasitized. Therefore, host
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Figure 2. Four examples of mimicry systems, involving Müllerian, rewarding, aggressive, and Batesian mimicry, respectively. (A) Aphelo-

ria clade A and (B) Brachoria cedra are two unpalatableMüllerianmimetic millipedes.Apheloria clade A has a greater proportion of yellow

aposematic coloration than B. cedra. (C) Turnera sidoides pinnatifida and (D) Modiolastrum malvifolium are flowers that demonstrate

rewarding mimicry: both species benefit from increased visitation from pollinators due to their similarity. (E) Eggs of the tawny-flanked

prinia Prinia subflava are the model for (F) eggs of its aggressive mimic, the brood-parasitic cuckoo finch Anomalospiza imberbis. Cuckoo

finch eggs differ from prinia eggs in having larger markings on average (Spottiswoode & Stevens 2010). (G) The venomous Eastern coral

snakeMicrurus fulvius, a model for (H) its Batesian mimic, the nonvenomous scarlet kingsnake Lampropeltis elapsoides. The mimic differs

from the model in that it exhibits a smaller area of black and a larger area of red. All photos reproduced with permission: panels A and

B, Marek and Bond (2009); panels C and D, Andrea A. Cocucci; panels E and F, Claire N. Spottiswoode; panels G and H, David W. Pfennig.
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phenotypes evolve toward increased discriminability from their

parasites (e.g., Lahti 2005; Spottiswoode & Stevens 2012). In

Batesian mimicry, a mimic advertises greater costs than it pro-

vides to a receiver by deceptively copying a model’s stimuli

that convey these greater costs, such as danger or unpalatability

(Bates 1862). An example of Batesian mimicry is the aposematic

color patterns of venomous Eastern coral snakes Micrurus fulvius

(Fig. 2G) that are mimicked by nonvenomous scarlet kingsnakes

Lampropeltis elapsoides (Fig. 2H), resulting in reduced preda-

tion on the latter due to predators avoiding the former (Pfennig

et al. 2001). As with aggressive mimicry, models are predicted

to benefit from evolving away from Batesian mimics, because

mimicry erodes signal reliability, which could reduce the extent

to which predators avoid the model (Fisher 1930). Empirical ev-

idence for such “chase-away” dynamics has been found in ag-

gressive mimicry systems (Lahti 2005; Spottiswoode & Stevens

2012) but is mixed in Batesian mimicry systems (Akcali et al.

2018; Kraemer et al. 2015; Rowland et al. 2010).

In both honest (Müllerian or rewarding) and deceptive (ag-

gressive or Batesian) mimicry, models and mimics often differ

from one another in the magnitude of certain stimuli, such that

mimicry is imperfect (Kikuchi & Pfennig 2013; McLean et al.

2019; Sherratt 2002). This is true for the Müllerian, Batesian, and

aggressive systems depicted in Figure 2. For example, in the case

of coral snakes and kingsnakes, the areas of black and red mark-

ings differ between model (M. fulvius) and mimic (L. elapsoides)

(Pfennig et al. 2007; Fig. 2G, H). These stimulus differences may

be proportionally processed by receivers, leading to qualitatively

different selection pressures on models that benefit from being re-

sembled by their mimic (as may be the case in honest mimicry),

and models which benefit from being discriminable from their

mimic (as may be the case in deceptive mimicry), as we discuss

next.

IMPLICATIONS OF WEBER’S LAW FOR HONEST

MIMICRY

In honest mimicry, models benefit from reduced discriminabil-

ity because the interests of model and mimic align: both bene-

fit when the receiver cannot distinguish between them (indeed,

the receiver benefits from this too). This means that models and

mimics may converge toward very similar phenotypes. However,

evolutionary constraints often mean that perfect mimicry is rare

and so there may be further selection for reduced discriminabil-

ity (Kikuchi & Pfennig 2013; Sherratt 2002). If Weber’s Law ap-

plies to receiver perception, then both model and mimic should

benefit from, and evolve toward, increased stimulus magnitudes

(Fig. 3A, B). This is because Weber’s Law states that a receiver

should find discriminating between two stimuli of higher mag-

nitude more difficult than discriminating between two stimuli of

lower magnitude.

When stimulus magnitudes are high, reduced discriminabil-

ity under Weber’s Law could weaken selection for mimetic fi-

delity. This is because high-magnitude stimuli may be percep-

tually indistinguishable even when differing greatly in absolute

magnitude (Fig. 3C). For example, the Müllerian co-mimetic mil-

lipedes Apheloria spp. and Brachoria spp. differ in the area of

yellow aposematic color on their bodies (Marek & Bond 2009;

Fig. 2A, B). If predators can discriminate between these species

based on this difference, and if this stimulus is proportionally pro-

cessed, then increasing the quantity of yellow should be benefi-

cial to both species because it would make them less discrim-

inable. As the quantity of yellow increases, even large absolute

differences in this stimulus may be indistinguishable to predators,

because they correspond to small relative differences. Therefore,

large variation in mimetic fidelity may persist.

IMPLICATIONS OF WEBER’S LAW FOR DECEPTIVE

MIMICRY

In contrast to models of honest mimics, models of deceptive

mimics are under selection to be discriminable from their mim-

ics (Fisher 1930; Holmgren & Enquist 1999; Lahti 2005; Nur

1970; Spottiswoode & Stevens 2012; but see Akcali et al. 2018).

If receivers proportionally process the stimuli that differ between

models and mimics, then Weber’s Law predicts that models will

evolve toward decreased stimulus magnitudes, such that the re-

ceiver can better discriminate them from their deceptive mimic,

and such that increased mimetic fidelity would be required to

trick the receiver. In the case of the snakes, M. fulvius and L.

elapsoides (Fig. 2G, H), there is evidence that predators discrim-

inate between model and Batesian mimic based on the area of

colored markings (Harper & Pfennig 2007). If predators process,

for instance, the area of red markings in a proportional manner,

then Weber’s Law predicts that the model should be selected to

evolve decreased red coloration, because this would make it more

discriminable from the mimic (Fig. 3A). Clearly, if predators pro-

portionally processed the area of all three color markings (red,

black, and yellow), models could not evolve decreased areas of

all three colors simultaneously. In such bounded distributions, a

decrease in the magnitude of one trait necessitates an increase

in the magnitude of another. There may therefore be no benefit

to evolving a lower magnitude of one stimulus, because this car-

ries the cost of an increase in the magnitude of another stimulus,

which under Weber’s Law may reduce discriminability. If, how-

ever, receivers do not proportionally process all the traits making

up the distribution (as may be the case if bright aposematic colors

are processed preferentially to darker colors), models may benefit

from evolving a reduced magnitude of the processed trait.

As with honest mimics, deceptive mimics benefit when stim-

ulus magnitudes are elevated, such that their discriminability

from models is lower (Fig. 3B). Therefore, unlike in honest
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Figure 3. Weber’s Law generates four predictions regarding the evolutionary trajectories and mimetic fidelity of mimicry systems, illus-

trated here using a hypothetical avian brood parasite-host system where receivers discriminate between eggs based on the spottiness

of their shells. Weber’s Law states that for higher stimulus magnitudes (i.e., more spots on an egg), a given absolute difference will be

more difficult to discriminate. See main text for details and reasoning behind the predictions.

mimicry systems, in deceptive mimicry systems the optimal stim-

ulus magnitudes of model and mimic are in conflict with each

other. Deceptive mimics are constrained to resemble models and

must therefore “follow” the direction of model evolution (Holm-

gren & Enquist 1999; Nur 1970). This suggests that, in decep-

tive mimicry, the stimulus magnitudes of both model and mimic

should evolve toward decreased magnitudes (Fig. 3A).

However, when mimicry is imperfect, under certain circum-

stances mimics may nevertheless evolve stimuli of higher magni-

tude than their model. This is because, when comparing between

two stimulus magnitudes, receivers may make use of different

baselines. For example, receivers may use a pre-existing mental

template of the model’s stimulus magnitude as a baseline. Alter-

natively and importantly, receivers could consistently treat either

the higher, or the lower, stimulus magnitude of the two (whether

model or mimic) as the baseline against which the other is com-

pared (Akre & Johnsen 2014). Consider a model possessing a

trait with a stimulus magnitude of 3, and imperfect mimics with

stimulus magnitudes of either 2 or 4. In a comparison between

model and imperfect mimic, receivers may consistently treat the

lower stimulus magnitude as the baseline (i.e., comparing either

2 vs. 3, where the mimic has the lower stimulus magnitude, or

comparing 3 vs. 4, where the model has the lower stimulus mag-

nitude). If so, then the proportional difference is 1
2 if the mimic’s

magnitude is 2 (because 3−2
2 = 1

2 ), and 1
3 if the mimic’s magni-

tude is 4 (because 4−3
3 = 1

3 ) (Fig. 3D). The latter proportional

difference is smaller and therefore less discriminable than the

former, according to Weber’s Law. The situation is identical if

receivers treat the higher stimulus magnitude as the baseline: the

proportional difference is 1
3 if the mimic’s magnitude is 2 (be-

cause 3−2
3 = 1

3 ), and 1
4 if the mimic’s magnitude is 4 (because

4−3
4 = 1

4 ). Again, the latter proportional difference is smaller. A

mimic is therefore less discriminable from the model when its

stimulus magnitude is higher than that of the model, than when

its stimulus magnitude is lower than that of the model (Fig. 3D).

Therefore, if specific conditions are met (i.e., mimicry is im-

perfect, stimuli are proportionally processed by receivers, and

receivers treat either the higher or lower stimulus magnitude as

the baseline), Weber’s Law predicts that deceptive mimics should

track their models toward evolving decreased stimulus magni-

tudes, while erring toward higher stimulus magnitudes than their

model. There should be no such trend in honest mimicry, because
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both models and mimics benefit equally from reduced discrim-

inability. Consistent with this prediction, L. elapsoides mimics

have a greater area of aposematic red coloration than their M. ful-

vius models (Fig. 2G, H), although it remains to be determined

whether all the necessary conditions are met for this observation

to be explained by this prediction of Weber’s Law.

WHAT IF RECEIVER PERCEPTION DOES NOT ADHERE

TO WEBER’S LAW?

Weber’s Law states that receiver discrimination should depend on

the relative difference between stimuli. If Weber’s Law does not

apply, such as when processing is limited by the receiver’s sen-

sory physiology, or subject to perceptual processes such as cat-

egorical or linear processing, then relative stimulus differences

should not predict discrimination. For example, the receiver’s

sensory acuity (the resolution with which a sensory system can

parse information) could be the only limit on what is discrim-

inable, meaning any difference that a receiver can resolve is dis-

criminable. Under categorical perception (e.g., Caves et al. 2018),

stimuli within categories are less discriminable than equally dif-

ferent stimuli between categories, regardless of the absolute mag-

nitude of the difference. Under linear perception (e.g., Levi et al.

1988), discriminability should increase with absolute, but not rel-

ative, stimulus difference. Weber’s Law does not apply in such

cases and so the benefits and costs of high- and low-magnitude

stimuli discussed above should not emerge, because relative dif-

ferences will not predict discriminability. However, other factors

such as the costs of producing high-magnitude signals may also

influence the evolution of stimulus magnitudes of models and

mimics, and these must be tested alongside the predictions of We-

ber’s Law (Box 2).

SIGNAL VERSUS CUE MIMICRY

So far, we have discussed cases in which a mimic simulates (ei-

ther honestly or deceptively) a model’s signal. In such “signal

mimicry,” by definition, the signals of both model and mimic

share an intended receiver. However, instead of mimicking model

signals, some mimics instead mimic model cues, which are de-

fined as stimuli that have not evolved to elicit responses from a

certain receiver. In such “cue mimicry,” cues are defined with re-

spect to the mimic’s receiver (Jamie 2017). A model’s cue may

have no signaling function to the model. For example, predators

may mimic an inanimate model, such as a twig, to remain un-

noticed by prey; the traits of the model (here, the twig) have not

evolved to signal to the mimic’s intended receiver (here, the prey).

Alternatively, a model’s cue may have a signaling function in-

tended for a different receiver than the mimic. For example, Vidua

finches attract mates by mimicking the songs of estrildid finches.

This is an example of cue mimicry because estrildid songs have

evolved as signals to other estrildids, and not to the mimic’s in-

tended receiver (here, conspecific Vidua finches) (Payne et al.

2000). In cases of cue mimicry, model and mimic do not share

an intended receiver. Therefore, selection from the receiver on

the mimic should not influence the evolution of the model (Jamie

2017). Thus, although Weber’s Law can influence the evolution

of mimics alone (in cases of cue mimicry), for receiver percep-

tion to affect the coevolution of models and mimics, mimics must

copy a models’ signals rather than their cues (as occurs in signal

mimicry).

SUMMARY OF PREDICTIONS FOR EVOLUTION OF

MIMICRY SYSTEMS UNDER WEBER’S LAW

If receivers process stimuli proportionally, then the evolution-

ary trajectories and mimetic fidelity of mimicry systems should

depend on the stimulus magnitudes of models and mimics.

This hypothesis generates four testable predictions, illustrated in

Figure 3, that are only applicable when receivers process stim-

uli proportionally. Predictions 1 and 2 relate to the evolution-

ary trajectories and optimality of absolute stimulus magnitudes

of models and mimics, respectively, whereas predictions 3 and

4 relate to the magnitude and directionality of the difference be-

tween the model and the mimic. Prediction 1 relates to models

specifically, and therefore applies only to signal mimicry systems

in which models evolve in response to mimics (see Akcali et al.

2018; Benitez-Vieyra et al. 2007; Mallet 1999 for signal mimicry

systems in which models do not evolve in response to mimics).

Predictions 2–4 relate to mimics, and are applicable to both signal

mimicry and cue mimicry.

Prediction 1: Models in honest mimicry systems should, all

else being equal, evolve stimuli of greater

absolute magnitude than models in deceptive

mimicry systems (Fig. 3A).

Prediction 2: Mimics should exhibit greater fitness or suc-

cess at higher stimulus magnitudes, regard-

less of whether mimicry is honest or deceptive

(Fig. 3B).

Prediction 3: Regardless of whether mimicry is honest or

deceptive, mimicry of high-magnitude stimuli

should be more imperfect (i.e., larger and more

variable stimulus differences between model and

mimic should be able to persist) than mimicry of

low-magnitude stimuli (Fig. 3C).

Prediction 4: Assuming that receivers consistently treat ei-

ther the stimulus of higher or lower magni-

tude as a baseline (regardless of whether this

is the model’s or the mimic’s stimulus), and

that mimicry is imperfect, stimulus magnitudes

should evolve to be higher in deceptive or cue

mimics than in their models (Fig. 3D).
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These four predictions are testable within and between sys-

tems (Box 2), and could contribute to explaining the variation

between mimicry systems in mimetic fidelity and stimulus evo-

lution. They also suggest that the evolution of traits toward in-

creased or decreased magnitudes may not be arbitrary, as is often

implicitly assumed (e.g., in signal detection theory; Oaten et al.

1975).

Box 2. Potential systems for testing evolutionary
predictions of Weber’s Law

Here, we highlight several mimicry systems in which

species differ in traits such as color patch area or mark-

ing size that might be proportionally processed. These lend

themselves to tests of the evolutionary predictions of Weber’s

Law that we have described, although of course researchers

will best understand the strengths and weaknesses of their

own study systems. Potentially suitable honest mimicry sys-

tems include Müllerian mimicry rings of ladybirds, aph-

eloriine millipedes, Yponomeuta and arctiine moths, Helico-

nius butterflies, and velvet ants (Brakefield 1985; Marek &

Bond 2009; O’Reilly et al. 2019; Turner 1981; Wilson et al.

2015). Examples of rewarding mimicry are rare, although

some plant-pollinator systems may be suitable (Benitez-

Vieyra et al. 2007; Jamie 2017). Potentially suitable de-

ceptive mimicry systems include Batesian mimicry in scar-

let kingsnakes, Papilio butterflies, and hoverflies (Harper &

Pfennig 2007; Kunte 2009; Penney et al. 2012), and aggres-

sive mimicry in avian brood parasites (Section 2) and fang-

blenny fish (Plagiotremus rhinorhynchos; Cheney & Côté

2005). In general, systems with geographical variation in the

incidence of models and mimics may be optimal, because

comparisons of stimulus magnitudes can be made between

areas where the species co-occur (where selection should act

on discriminability) and areas where only one species occurs.

Moreover, systems where evolutionary history of stimuli can

be inferred, such as those in which historical museum collec-

tions exist, could be used to determine evolutionary trajecto-

ries of proportionally processed stimuli.

Testing all four predictions outlined in Section 1 requires

a mixture of studies of specific systems, and comparisons

across systems. In both honest and deceptive systems where

the mimics and models are prey, an experiment on prey sur-

vival could determine whether models with higher magni-

tude stimuli are discriminated less readily than those with

lower magnitude stimuli (Prediction 1). A similar experiment

could determine whether imperfect mimics with higher stim-

ulus magnitudes are predated less often than imperfect mim-

ics with lower stimulus magnitudes (Predictions 2 and 4). Al-

though such studies will ultimately benefit from being con-

ducted in situ, controlled lab studies are probably a realistic

first step to isolate effects of proportional processing. Con-

trolled environments such as the “novel world” experimen-

tal arena (Alatalo & Mappes 1996), which has been used for

studies of social learning (e.g., Hämäläinen et al. 2020), could

provide a good setting for conducting such studies. Here,

predators are exposed to a novel artificial environment con-

taining manipulated “prey” items, to study predator responses

to prey stimuli in a controlled manner.

Where historical data exist, the direction of stimulus

magnitude evolution over time can be quantified (Predictions

1 and 4). Comparative studies carried out with systems in

which mimics vary along a continuum from honest to decep-

tive (as has been suggested in Heliconius butterflies; Brower

et al. 1963) could determine whether stimulus magnitudes dif-

fer adaptively between honest and deceptive mimics (Predic-

tion 1). Similarly, studies could test whether lower magnitude

stimuli show greater mimetic fidelity than higher magnitude

stimuli in comparable mimicry systems (Prediction 3).

Other factors aside from Weber’s Law influence the evo-

lution of mimicry systems, which may affect the suitability

of different study systems for testing the predictions of We-

ber’s Law. For example, greater mimetic fidelity may evolve

in systems where receivers have more time to discriminate

mimics from models, than when receivers must make rapid

decisions. Hosts of brood parasites have the opportunity to

study the eggs in their nests carefully before deciding whether

to reject a potential mimic that will hatch weeks later. By con-

trast, in many predator-prey systems, the receiver must make

a rapid decision (Chittka & Osorio 2007), which may result in

weaker selection for mimetic fidelity, irrespective of any ef-

fect of Weber’s Law. Similarly, mimetic fidelity will depend

on factors including the costs of receiver errors and genetic

constraints (Kikuchi & Pfennig 2013; McLean et al. 2019).

These considerations should be taken into account when test-

ing whether mimetic fidelity depends on stimulus magnitudes

across systems (Prediction 3).

High- or low-magnitude stimuli may also have costs and

benefits independent of Weber’s Law. For example, high-

magnitude stimuli may be costly to produce or increase sus-

ceptibility to detection by predators, resulting in evolution to-

ward lower stimulus magnitudes. This hypothesis makes the

same prediction as Prediction 1 for models of deceptive mim-

ics, and so must be tested alongside the hypothesis that We-

ber’s Law affects the evolution of stimulus magnitudes. One

way to distinguish between these hypotheses would be to

compare the evolution of model stimulus magnitudes in ar-

eas where the model and mimic co-occur, with areas where

only one species occurs. If the selective agent is a cost of

producing high-magnitude signals, both populations should
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evolve toward low-magnitude signals. If selection is due to

receiver discrimination between model and mimic (modulated

by Weber’s Law), only the population in which both species

co-occur should exhibit evolution toward lower stimulus mag-

nitudes.

In summary, other factors that might produce similar pre-

dictions should be tested alongside the hypothesis that We-

ber’s Law affects the evolution of stimulus magnitudes. Re-

searchers will be best placed to consider which specific al-

ternative hypotheses to test in their study systems. However,

perhaps the most important test for distinguishing between al-

ternative hypotheses is to confirm that receivers proportion-

ally process the stimuli of interest. We detail how to do this in

Section 2.

Section 2: A Framework for Testing
Weber’s Law
Here, we provide a four-step framework for testing Weber’s Law

and illustrate it with real and hypothetical examples of aggres-

sive mimicry, focusing on egg mimicry in avian brood parasites.

Avian brood parasites lay eggs in the nests of “hosts,” which as a

result often incur considerable costs through the death or reduc-

tion in fitness of their own offspring (Davies 2000). Hosts often

evolve the ability to identify and reject parasitic eggs, in turn se-

lecting for the evolution of egg mimicry by parasites. Hosts may

evolve complex signatures in egg markings to make it harder

for parasites to successfully mimic their eggs (Spottiswoode &

Stevens 2010; Swynnerton 1918) and enhanced discrimination

abilities to better identify parasitic eggs from their own (Spottis-

woode & Stevens 2011). Avian brood parasite-host systems are

often tractable for experimental research (Rothstein 1990): re-

ceivers are known and their responses easily elicited and scored,

visual phenotypes are readily measurable, and in many cases the

stimuli used by hosts in discrimination are already known. There-

fore, they provide excellent case studies for investigating how to

test Weber’s Law correctly in coevolutionary mimicry systems.

STEP 1: IDENTIFY RECEIVER AND STIMULUS

It follows directly from the definition of Weber’s Law that there

must exist a receiver, and an appropriate stimulus. These terms

should be specifically defined, particularly in a coevolutionary

context.

Receiver species should be studied independently
In some coevolutionary systems, there may be several different

receiver species, with different sensory and discrimination capa-

bilities, and who pay attention to different stimuli (Dalziell &

Welbergen 2016). For example, Heliconius butterflies are Mülle-

rian mimics that signal toxicity to predators, but also signal their

own species identity to conspecifics to avoid costly interspecific

matings (Estrada & Jiggins 2008). Predators and conspecifics are

thought to process different aspects of Heliconius wing pattern

signals (Briscoe et al. 2010; Bybee et al. 2012; Dell’Aglio et al.

2018). In such systems, each receiver species must be studied

independently to determine whether it exhibits proportional pro-

cessing of the stimuli that it detects.

The stimulus must have an associated quantitative
magnitude with a linear axis
It is also essential to identify an appropriate stimulus. For propor-

tional processing to be feasible, a stimulus must have an associ-

ated quantitative magnitude, which includes zero, is never neg-

ative, and increases on a linear axis (Smeets & Brenner 2008).

Weber’s Law states that a greater stimulus difference is required

to discriminate between stimuli of greater magnitude, and so it

must be possible to say that stimulus X has a greater magnitude

than stimulus Y. For example, stimuli associated with numerosity,

such as the number of “chucks” in frog calls (Akre et al. 2011)

and number of fish in a shoal (Gómez-Laplaza & Gerlai 2011),

meet this requirement. However, when differences are large and

easily distinguished irrespective of stimulus magnitude, propor-

tional processing will likely not affect discrimination and there-

fore Weber’s Law may not be biologically relevant.

“Stimulus magnitude” and “stimulus difference” must
correspond to the same stimulus
In the equation for Weber’s Law, �I is the stimulus difference

(i.e., the difference in magnitude between two stimuli being com-

pared), I is the stimulus magnitude, and k is a constant (eq. 1).

Crucially, �I and I must refer to the same stimulus and be mea-

sured in the same units, because k is dimensionless.

If the stimulus is not explicitly defined, then it is easy to

make an equivocation error (i.e., use a term inconsistently within

an argument), as several of us (the authors) have done in the

past. For instance, does Weber’s Law predict that when clutches

are large, rejection of foreign eggs becomes more difficult? It

may seem intuitive that larger clutches have a larger stimulus

magnitude than smaller clutches, and therefore discrimination of

foreign eggs becomes more difficult as clutch size increases. In-

deed, American robins Turdus migratorius with smaller clutches

rejected a dark blue experimental egg added to their nest more

readily than did robins with larger clutches of pale blue eggs

(Abolins-Abols & Hauber 2020). The authors of this study

cautiously suggest that their findings are consistent with Weber’s

Law, arguing that the greater stimulus magnitude (a larger

surface area of pale blue, due to more robin eggs being present)

of a larger clutch should reduce the robins’ ability to recognize

a dark blue foreign egg compared to when the experimental egg

is added to smaller clutches. However, if robins discriminate
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between foreign eggs based on color, then there is an equivoca-

tion error. This is because the stimulus referred to in the context

of stimulus magnitude I (surface area of the clutch) is different

to the stimulus referred to in the context of stimulus difference

�I (color difference). Hence, Weber’s Law cannot explain how

these birds recognize the foreign eggs added in this experiment.

Interestingly, Weber’s Law could apply to how American robins

in this study detect that parasitism has occurred, but not apply

to recognition of which egg is parasitic (see Section 3). In

summary, to avoid equivocation errors it is essential to define

the term “stimulus” throughout, ensuring that both the stimulus

magnitude and the stimulus difference refer to the same stimulus.

STEP 2: TEST WHETHER RECEIVERS USE THE

STIMULUS IN DISCRIMINATION

An essential step when testing Weber’s Law is to demonstrate

that receivers process the stimulus being tested in discrimination

(for examples where deviations from Weber’s Law are observed

because this criterion is not met, see Xu & Spelke 2000; Olsson

et al. 2015; Smeets & Brenner 2008). For example, when testing

how angelfish (Pterophyllum scalare) choose which size shoal to

join, Gómez-Laplaza and Gerlai (2011) simultaneously demon-

strate that angelfish do indeed choose based on shoal size, and

that their choice occurs in line with Weber’s Law. Clearly, if an-

gelfish did not use shoal size in decision-making, then Weber’s

Law could not apply to the stimulus of shoal size.

STEP 3: TEST FOR WEBER’S LAW

If the stimulus difference relative to the stimulus magnitude

(�I/I) predicts discrimination better than the absolute stimulus

difference (�I), then Weber’s Law has been demonstrated (eq. 1).

One can also test for the near-miss and opposite-miss to We-

ber’s Law by including absolute stimulus magnitude (I) in the

model that also contains relative stimulus difference (�I/I). If,

in such a model, absolute stimulus magnitude positively affects

discrimination then the near-miss is supported, whereas if ab-

solute stimulus magnitude negatively affects discrimination then

the opposite-miss is supported (for details, see LaBarbera et al.

2020).

STEP 4: CONSIDER (CO-)EVOLUTIONARY

IMPLICATIONS

In Section 1, we discussed evolutionary implications of Weber’s

Law; here, we provide a hypothetical example to suggest how

testing for Weber’s Law could contribute toward an understand-

ing of potentially counterintuitive results in specific systems.

Consider pattern complexity, which can be defined as a mea-

sure of how difficult a pattern is to reproduce (Stoddard et al.

2014). Hosts of brood parasites may produce complex egg pat-

tern signatures that are difficult to mimic. If hosts proportion-

ally process differences in pattern complexity when discriminat-

ing between eggs, then a host should be able to discriminate be-

tween two eggs with simple patterns more easily than between

two eggs with complex patterns. In this way, simpler host patterns

may evolve to improve discrimination of foreign eggs (Prediction

1 [Section 1]), as opposed to the long-standing hypothesis that

selection should select for more complex patterns as these may

be more difficult to mimic (Stoddard et al., 2014). A study on

common cuckoo and host egg phenotypes (Stoddard et al. 2014)

suggested that intermediate complexity may be favored because

of the trade-off between advantages of high complexity (making

forgery more difficult) and advantages of lower complexity (mak-

ing eggs more recognizable, defined as how easily an egg could

be matched to its clutch). However, we suggest here that We-

ber’s Law could also contribute to the benefits of simplicity for

facilitating discrimination. This example demonstrates that test-

ing Weber’s Law has the potential to explain aspects of a system

that are counterintuitive, or are not explained by other factors.

Section 3: Case Studies
Because Weber’s Law has largely been overlooked in the study of

coevolution, we provide two brief hypothetical case studies to il-

lustrate the four-step framework outlined above (Section 2), and

to highlight coevolutionary implications of Weber’s Law (Sec-

tion 1). Hosts of brood parasites often recognize visual mimics

by discriminating between eggs. However, a first line of defense

could be detection of the addition of an egg to a clutch (in the

absence of recognition of which egg is foreign). Therefore, in the

case of egg rejection, Weber’s Law and its coevolutionary impli-

cations can be tested with respect to both detection and recogni-

tion of parasitic eggs; the two case studies below focus on detec-

tion of a change and recognition of a mimic, respectively.

CASE STUDY 1: DETECTION

Step 1: Identify receiver and stimulus
If parasites add their own egg to a host clutch without concur-

rently removing a host egg (e.g., greater honeyguides Indica-

tor indicator [Spottiswoode and Koorevaar 2012]; lesser hon-

eyguides Indicator minor [Skead 1951]; American coots Fulica

americana [Lyon 2003]), then hosts (i.e., the receivers) might de-

tect a parasitism event on the basis of a change in clutch size (i.e.,

the stimulus) (Section 2, STEP 1).

Step 2: Test whether receiver uses the stimulus in
discrimination
If hosts upregulate anti-parasite defenses (e.g., abandoning their

nest) when an egg is added to a clutch, this implies that the ad-

dition of an egg is involved in discrimination. This can be tested

with experiments in which an egg is either added to a host clutch
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(i.e., increase in clutch size) or swapped for a host egg (i.e., no

change in clutch size, despite experimental addition) and rates of

anti-parasite defenses are recorded.

Step 3: Test for Weber’s Law
Weber’s Law can be tested using the same experimental setup

as in Step 2, by determining whether anti-parasite defenses are

elicited more readily when clutch size is small. Specifically, if

the relative difference in clutch size caused by adding a parasitic

egg to the host clutch predicts defense behavior, in the absence of

other indicators of parasitism, then this is evidence for Weber’s

Law (Section 2, STEP 3). For example, the finding that American

robins with smaller clutches are more likely to reject foreign eggs

than those with larger clutches (Abolins-Abols & Hauber 2020;

Section 2, STEP 1) is consistent with Weber’s Law when applied

to detection of parasitism.

Step 4: Consider (co-)evolutionary implications
Although this example does not involve discriminating mim-

ics from models, coevolutionary predictions from Section 1

can be tested. For example, hosts should evolve smaller clutch

sizes, because this facilitates detection of parasitism (Prediction

1 [Section 1]; Akre & Johnsen 2014). Consistent with Predic-

tion 1, comparative evidence suggests that parasitized species

lay smaller clutches than unparasitized species, and that the fre-

quency of nest abandonment (an anti-parasite defense) is nega-

tively correlated with clutch size (Hauber 2003), although this

study did not interpret these results in terms of Weber’s Law but

rather other factors. To determine that lower clutch sizes evolve

due to Weber’s Law rather than other selective forces, it would

be necessary to show that these reductions in clutch size occur

in host species that detect additional eggs based on Weber’s Law,

but not in hosts that do not.

Parasites, however, should preferentially target larger

clutches, because they benefit from the addition of their egg

going undetected (Prediction 2 [Section 1]; Akre & Johnsen

2014). Prediction 2 can be experimentally tested by manipulat-

ing host clutch sizes, in systems where brood parasites examine

host clutches before laying and can therefore target specific nests,

rather than laying indiscriminately.

CASE STUDY 2: RECOGNITION

As described above, American robins could detect parasitism by

the addition of an egg. However, to single out a parasitic egg and

reject it, they must use other stimuli to recognize which is the

foreign egg, and avoid rejecting their own eggs (Davies & Brooke

1988). In the context of recognition, Weber’s Law is testable if

recognition is based on stimuli for which quantitative magnitudes

can be measured, as in the following hypothetical example.

Step 1: Identify receiver and stimulus
In principle, hosts (the receivers) might use a trait such as the

number of markings on eggs (the stimulus) to recognize parasitic

eggs.

Step 2: Test whether receivers use the stimulus in
discrimination
We must first test whether hosts do indeed discriminate between

eggs based on the number of markings on them. This can be done

using egg rejection experiments, in which experimental eggs are

placed inside host nests and rejection behavior quantified (e.g.,

Davies & Brooke 1989; Spottiswoode & Stevens 2010). If the

difference in the number of markings between host and experi-

mental eggs predicts rejection (as seen in fork-tailed drongos Di-

crurus adsimilis; Lund & Spottiswoode, unpublished data), this

implies that the number of markings is used in discrimination.

Step 3: Test for Weber’s Law
In addition to demonstrating that hosts discriminate between eggs

based on the number of markings, such egg rejection experiments

can be used to directly test for Weber’s Law itself. Specifically,

if the relative difference in the number of markings between host

and experimental eggs predicts egg rejection better than the abso-

lute difference, then this is evidence for Weber’s Law (c.f. Fig. 1).

Step 4: Consider (co-)evolutionary implications
Given that brood parasites exhibit deceptive mimicry, the number

of markings on host eggs should decline over time (because eggs

with lower stimulus magnitudes are more discriminable from

those of their parasites; Prediction 1 [Section 1]). If historical

collections allow examination of egg phenotypes from the past,

then this prediction could be tested. Field studies or examina-

tion of egg collections of brood parasites and hosts in museums

might also permit comparison of levels of mimetic fidelity across

hosts: if many host species discriminate based on the number of

markings, then Weber’s Law predicts greater mimetic fidelity in

parasites targeting hosts that exhibit lower number of markings,

than those that exhibit higher number of markings (Prediction 3).

Conclusions
In this article, we highlight the advantages of considering We-

ber’s Law in the study of coevolution, and particularly mimicry,

and provide guidance on pitfalls to avoid when doing so. Many

factors can affect the evolution of models and mimics, and thus

other hypotheses unrelated to Weber’s Law must be tested. If re-

searchers do choose to study Weber’s Law in coevolutionary sys-

tems, then we urge that it is essential to identify the receiver in

question; to identify the stimuli being used in discrimination; and
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to ensure that when defining “stimulus magnitude” and “stimulus

difference,” these measures apply to the same stimulus. In gen-

eral, defining terms explicitly can help to prevent misapplications

of Weber’s Law.

Applying Weber’s Law appropriately to mimicry systems

will help both to generate and to test predictions about optimal

phenotypes in models and their mimics, the potentially dissimi-

lar evolutionary trajectories that mimics and models may follow,

and the variation in mimetic fidelity between mimicry systems.

In particular, the specific type of mimicry being exhibited may

shape how proportionally processed stimuli evolve. Such effects

of receiver perceptual processing on the evolution of mimicry

systems emphasize that receiver perception should be integrated

into theoretical models of coevolution between models and mim-

ics, as it can drive evolution in otherwise unexpected or counter-

intuitive directions.
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