718 research outputs found

    2018 NASA Green Propulsion Technology Development Roadmap

    Get PDF
    The NASA Green Propulsion Working Group (GPWG) was tasked by the NASA Chemical Propulsion Subcapabilities Management (CPSM) with the development of this NASA Green Propulsion Technologies Development Roadmap, herein referred to as the Green Propulsion Roadmap, or simply the Roadmap, to provide guidance to NASA through the CPSM on green propulsion technology development. Other agencies or commercial partners may refer to this roadmap as well. It is envisioned that the synthesis of various Center-based activities and knowledge repositories will result in a cumulative knowledge gain, and will provide capabilities beyond the sum contribution of individual Centers. Ultimately, a well-defined roadmap of technology investment path, the enhanced coordination and alignment of activities among NASA Centers and other Federal Agencies, and a well-supported green propulsion community will facilitate the path towards the broader infusion of green propulsion technologies for science and human exploration missions, as well as a deeper understanding of the fundamental behaviors and characteristics of these systems that is on par with other historically used monopropellant propulsion systems, such as hydrazine

    Sustainable Landscapes: Evaluating Strategies for Controlling Autumn Olive (Elaeagnus umbellata) on Reclaimed Surface Mineland at The Wilds Conservation Center in Southeastern Ohio

    Get PDF
    Autumn olive (Elaeagnus umbellata) was planted during the reclamation process to reduce erosion and improve nitrogen content of the soil. However, since its establishment, E. umbellata has spread prolifically and control measures are difficult. The primary objective of this case study was to evaluate the effectiveness of various control methods on eradication of E. umbellata in varying degrees of infestation. A two-phase case study was conducted at The Wilds conservation center in Cumberland, OH. Phase 1 began in 2007-2008 to evaluate three treatments in areas with moderate cover (15-30%) of E. umbellata: mechanical removal, foliar herbicide, and dormant stem herbicide. Nine 200m2 study plots were established with three replications of each treatment. Effectiveness of each treatment was evaluated in 2009 through tracking 225 individual shrubs. The foliar herbicide controlled 98% of E. umbellata; dormant stem herbicide achieved 71 % and the mechanical treatment controlled only 15 %. Statistical comparisons indicated the foliar and dormant stem herbicides were more effective (P = 0.0008) than mechanical removal. This suggests that foliar applications can be a reliable tool for control of E. umbellata in areas with a 15- 30 % density level. Based on these findings, phase 2 of this study was initiated in 2010 to evaluate removal techniques in dense shrub infestations (95-100 %). Treatments included a combination of mechanical clearing then a chemical treatment of stumps to reduce re-sprouts. The fracture treatment was most effective during the second phase (63 %), when compared to the cut-stump (46 %) mechanical treatment (P = 0.004). Results demonstrate that a combined mechanical-chemical approach is efficient in dense infestations. Mechanical land clearing through fracture and re-sprout treatment appeared to be most effective in E. umbellata control and the most cost effective in dense cover; however replicated studies are needed to provide conclusive information about the fracture re-sprout treatment

    Inertial Weldment of Rhenium and Inconel 718

    Get PDF
    Inertia welding has been found to be a successful method for joining pure rhenium to Inconel 718, and with additional experimentation, this process may have great potential for rocket nozzle applications. Refractory metals are ideally suited to this application, where high temperatures and oxidizing environment survivability is required, but not all of the thruster must be made of these materials, only the areas that require them. A bolted joint between the two metals is not ideal, especially for small thrusters where the mess of a bolted join will come at a steep price. A welded joint would be preferred for flight thrusters

    Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Get PDF
    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of hightemperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, highmeltingpoint ceramicsmetallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the nonnuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A smallscale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations

    Development and Testing of a Novel Green Propellant Piston Tank

    Get PDF
    Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites

    Using airborne and DESIS imaging spectroscopy to map plant diversity across the largest contiguous tract of tallgrass prairie on earth

    Get PDF
    Grassland ecosystems are under threat globally, primarily due to land-use and land-cover changes that have adversely affected their biodiversity. Given the negative ecological impacts of biodiversity loss in grasslands, there is an urgent need for developing an operational biodiversity monitoring system that functions in these ecosystems. In this paper, we assessed the capability of airborne and spaceborne imaging spectroscopy (also known as hyperspectral imaging) to capture plant α-diversity in a large naturally-assembled grassland while considering the impact of common management practices, specifically prescribed fire. We collected a robust insitu plant diversity data set, including species composition and percent cover from 2500 sampling points with different burn ages, from recently-burned to transitional and pre-prescribed fire at the Joseph H. Williams Tallgrass Prairie Preserve in Oklahoma, USA. We expressed in-situ plant α-diversity using the first three Hill numbers, including species richness (number of observed species in a plant community), exponential Shannon entropy index (hereafter Shannon diversity; effective number of common species, where species are weighed proportional to their percent cover), and inverse Simpson concentration index (hereafter Simpson diversity; effective number of dominant species, where more weight is given to dominant species) at four different plot sizes, including 60 m × 60 m, 120 m × 120 m, 180 m × 180 m, and 240 m × 240 m. We collected full-range airborne hyperspectral data with fine spatial resolution (1 m) and visible and near-infrared spaceborne hyperspectral data from DESIS sensor with coarse spatial resolution (30 m), and used the spectral diversity hypothesis— i.e., that the variability in spectral data is largely driven by plant diversity—to estimate α-diversity remotely. In recently-burned plots and those at the transitional stage, both airborne and spaceborne data were capable of capturing Simpson diversity—a metric that calculates the effective number of dominant species by emphasizing abundant species and discounting rare species—but not species richness or Shannon diversity. Further, neither airborne nor spaceborne hyperspectral data sets were capable of capturing plant α-diversity of 60 m × 60 m or 120 m × 120 m plots. Based on these results, three main findings emerged: (1) management practices influence grassland biodiversity patterns that can be remotely detected, (2) both fine- and coarse-resolution remotely-sensed data can detect the effective number of dominant species (e.g., Simpson diversity), and (3) attention should be given to site-specific plant diversity field data collection to appropriately interpret remote sensing results. Findings of this study indicate the feasibility of estimating Simpson diversity in naturally-assembled grasslands using forthcoming spaceborne imagers such as National Aeronautics and Space Administration’s Surface Biology and Geology mission

    Coupling spectral and resource-use complementarity in experimental grassland and forest communites

    Get PDF
    Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n-dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity

    Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments

    Get PDF
    Increases in leaf mass per area (LMA) are commonly observed in response to environmental stresses and are achieved through increases in leaf thickness and/or leaf density. Here, we investigated how the two underlying components of LMA differ in relation to species native climates and phylogeny, across deciduous and evergreen species. Using a phylogenetic approach, we quantified anatomical, compositional and climatic variables from 40 deciduous and 45 evergreen Quercus species from across the Northern Hemisphere growing in a common garden. Deciduous species from shorter growing seasons tended to have leaves with lower LMA and leaf thickness than those from longer growing seasons, while the opposite pattern was found for evergreens. For both habits, LMA and thickness increased in arid environments. However, this shift was associated with increased leaf density in evergreens but reduced density in deciduous species. Deciduous and evergreen oaks showed fundamental leaf morphological differences that revealed a diverse adaptive response. While LMA in deciduous species may have diversified in tight coordination with thickness mainly modulated by aridity, diversification of LMA within evergreens appears to be dependent on the infrageneric group, with diversification in leaf thickness modulated by both aridity and cold, while diversification in leaf density is only modulated by aridity

    Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity

    Get PDF
    BACKGROUND:Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. METHODOLOGY/PRINCIPAL FINDINGS:Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. CONCLUSIONS:Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits
    • …
    corecore