7,134 research outputs found

    The high-pressure behavior of CaMoO4

    Full text link
    We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table

    Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps

    Get PDF
    Abstract. Alluvial fans are often present at the outlet of small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and debris flows. Alluvial fans are preferred sites for human settlements and are frequently crossed by transport routes. In order to reduce the risk for economic activities located on or near the fan and prevent loss of lives due to floods and debris flows, torrent control works have been extensively carried out on many alpine alluvial fans. Hazard management on alluvial fans in alpine regions is dependent upon reliable procedures to evaluate variations in the frequency and severity of hydrogeomorphic processes and the long-term performance of the torrent training works. An integrated approach to the analysis of hydrogeomorphic processes and their interactions with torrent control works has been applied to a large alluvial fan in the southern Carnic Alps (northeastern Italy). Study methods encompass field observations, interpretation of aerial photographs, analysis of historical documents, and numerical modelling of debris flows. The overall performance of control works implemented in the early decades of 20th century was satisfactory, and a reduction of hazardous events was recognised from features observed in the field and in aerial photographs, as well as from the analysis of historical records. The 2-D simulation of debris flows confirms these findings, indicating that debris flow deposition would not affect urban areas or main roads, even in the case of a high-magnitude event. Present issues in the management of the studied alluvial fan are representative of situations frequently found in the European Alps and deal with the need for maintenance of the control structures and the pressures for land use changes aimed at the economic exploitation of the fan surface

    A Technique of Direct Tension Measurement of a Strung Fine Wire

    Get PDF
    We present a new technique of direct measurement of wire tensions in wire chambers. A specially designed circuit plucks the wire using the Lorentz force and measures the frequency of damped transverse oscillations of the wire. The technique avoids the usual time-consuming necessity of tuning circuit parameter to a resonance. It allows a fast and convenient determination of tensions and is straightforward to implement.Comment: 15 pages with 9 figure

    Activity Budgets, Foraging Behavior, and Diet of White-Tailed Kites (Elanus leucurus) during Breeding and Nonbreeding Seasons in the Argentine Pampas

    Get PDF
    From 2005 to 2009 we evaluated the activity patterns and food habits of White-tailed Kites (Elanus leucurus) during the breeding and nonbreeding seasons in the Argentine Pampas. According to time-activity budget analyses, perching was the most frequently observed activity during the nonbreeding season (52% of total time), whereas foraging was the most frequent activity during the breeding season (41% of total time). Flight was the least frequent of all kites' activities in both seasons (8% and 9% during the breeding and nonbreeding season, respectively). Even when kites spent a similar percentage of time foraging during both breeding and nonbreeding seasons (41% and 39%, respectively), their hunting technique differed between seasons. During the nonbreeding season, we only observed kites using active searching to forage, but during the breeding season, we observed them using active and passive searching in similar proportions. According to pellet analyses, the diet of kites was mostly composed of rodents (> 96% of total prey). Small rodents (body mass < 35 g) were dominant in numeric terms in the diet in both seasons, but larger rodents represented the bulk of biomass. Our results indicate that in the Argentine Pampas, White-tailed Kites are predominantly mammal-eating, active-search predators, as previously reported for the species in South America and North America and for other Elanus species around the world.Fil: Baladrón, Alejandro V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Pretelli, Matías Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Cavalli, Matilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Bó, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Novel Insights into RAD52’s Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies

    Get PDF
    Simple Summary Human RAD52 is a non-essential DNA/RNA-binding protein thought to be involved in many DNA repair mechanisms. Initially regarded as having a major role only in error-prone backup DNA repair mechanisms, RAD52 has recently gained attention because its inhibition induces synthetic lethality in cancer cells with an inactivated homologous recombination pathway (for error-free double-strand-break repair). RAD52 is thus a potential target to overcome resistance and unwanted side effects. Unfortunately, researchers still lack detailed structural and mechanistic information on RAD52 and have identified only a limited number of inhibitors, none of which are in the preclinical phase. This review summarizes the current knowledge on RAD52, highlighting the potential of its inhibition. This review also discusses the critical gaps in knowledge and sets out future directions for effective campaigns to discover RAD52 inhibitors. In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign

    Hydrolysis of caprine and ovine milk proteins, brought about by aspartic peptidases from Silybum marianum flowers

    Get PDF
    The flowers of cardoon (Asteraceae) are a rich source of aspartic peptidases which possess milk clotting activity – and are thus used in traditional cheesemaking in the Iberian Peninsula. This study was aimed at characterizing the enzymatic action of the aspartic peptidases present in flowers of Silybum marianum (L.) Gaertn. (Asteraceae), specifically upon degradation of caseins. The proteolytic activities toward Na-caseinates previously prepared from caprine and ovine milks were studied, in a comparative fashion, using urea-PAGE, tricine-SDS-PAGE, densitometry, electroblotting and sequencing. Caprine as1- and b-caseins were degraded up to 68% and 40%, respectively, during 24 h of incubation. Only one important and well-defined band corresponding to a molecular weight of 14.4 kDa – i.e. a fragment of b-casein, was observed by 12 h of hydrolysis. By 24 h of incubation, ovine as- and b-caseins were degraded up to 76% and 19%, respectively. In what concerns specificity, the major cleavage site in ovine caseinate was Leu99-Arg100 in as1-casei
    corecore