6,393 research outputs found
X-Ray Evolution of Active Galactic Nuclei and Hierarchical Galaxy Formation
We have incorporated the description of the X-ray properties of Active
Galactic Nuclei (AGNs) into a semi-analytic model of galaxy formation, adopting
physically motivated scaling laws for accretion triggered by galaxy encounters.
Our model reproduces the level of the cosmic X-ray background at 30 keV; we
predict that the largest contribution (around 2/3) comes from sources with
intermediate X-ray luminosity 10^{43.5}< L_X/erg/s <10^{44.5}, with 50 % of the
total specific intensity produced at z<2. The predicted number density of
luminous X-ray AGNs (L_X>10^{44.5} erg/s in the 2-10 keV band) peaks at z
around 2 with a decline of around 3 dex to z=0; for the low luminosity sources
(10^{43}<L_X/erg/s <10^{44}) it has a broaderand less pronounced maximum around
z 1.5. The comparison with the data shows a generally good agreement. The model
predictions slightly exceed the observed number of low-luminosity AGNs at z
around 1.5, with the discrepancy progressively extending to
intermediate-luminosity objects at higher redshifts; we discuss possible
origins for the mismatch. Finally, we predict the source counts and the flux
distribution at different redshifts in the hard (20-100 keV) X-ray band for the
sources contributing to the X- ray background.Comment: 27 pages, accepted for publication in Ap
Sunyaev-Zel'dovich Effects from Quasars in Galaxies and Groups
The energy fed by active galactic nuclei to the surrounding diffuse baryons
changes their amount, temperature, and distribution; so in groups and in member
galaxies it affects the X-ray luminosity and also the Sunyaev-Zel'dovich
effect. Here we compute how the latter is enhanced by the transient blastwave
driven by an active quasar, and is depressed when the equilibrium is recovered
with a depleted density. We constrain such depressions and enhancements with
the masses of relic black holes in galaxies and the X-ray luminosities in
groups. We discuss how all these linked observables can tell the quasar
contribution to the thermal history of the baryons pervading galaxies and
groups.Comment: 4 pages, 3 figures, uses REVTeX4 and emulateapj.cls. Accepted by ApJ
Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions
The specific mechanisms which leads to the formation of fractal
nanostructures by pulsed laser deposition remain elusive despite intense
research efforts, motivated mainly by the technological interest in obtaining
tailored nanostructures with simple and scalable production methods. Here we
focus on fractal nanostructures of titanium dioxide, , a strategic
material for many applications, obtained by femtosecond laser ablation at
ambient conditions. We model the fractal formation through extensive Monte
Carlo simulations based on a set of minimal assumptions: irreversible sticking
and size independent diffusion. Our model is able to reproduce the fractal
dimensions and the area distributions of the nanostructures obtained in the
experiments for different densities of the ablated material. The comparison of
theory and experiment show that such fractal aggregates are formed after
landing of the ablated material on the substrate surface by a diffusive
mechanism. Finally we discuss the role of the thermal conductivity of the
substrate and the laser fluence on the properties of the fractal
nanostructures. Our results represent an advancement towards controlling the
production of fractal nanostructures by pulsed laser deposition.Comment: 21 page
The U-band Galaxy Luminosity Function of Nearby Clusters
Despite the great potential of the U-band galaxy luminosity function (GLF) to
constrain the history of star formation in clusters, to clarify the question of
variations of the GLF across filter bands, to provide a baseline for
comparisons to high-redshift studies of the cluster GLF, and to estimate the
contribution of bound systems of galaxies to the extragalactic near-UV
background, determinations have so far been hampered by the generally low
efficiency of detectors in the U-band and by the difficulty of constructing
both deep and wide surveys. In this paper, we present U-band GLFs of three
nearby, rich clusters to a limit of M_U=-17.5 (M*_U+2). Our analysis is based
on a combination of separate spectroscopic and R-band and U-band photometric
surveys. For this purpose, we have developed a new maximum-likelihood algorithm
for calculating the luminosity function that is particularly useful for
reconstructing the galaxy distribution function in multi-dimensional spaces
(e.g., the number of galaxies as a simultaneous function of luminosity in
different filter bands, surface brightness, star formation rate, morphology,
etc.), because it requires no prior assumptions as to the shape of the
distribution function.
The composite luminosity function can be described by a Schechter function
with characteristic magnitude M*_U=-19.82+/-0.27 and faint end slope
alpha_U=-1.09+/-0.18. The total U-band GLF is slightly steeper than the R-band
GLF, indicating that cluster galaxies are bluer at fainter magnitudes.
Quiescent galaxies dominate the cumulative U-band flux for M_U<-14. The
contribution of galaxies in nearby clusters to the U-band extragalactic
background is <1% Gyr^-1 for clusters of masses ~3*10^14 to 2*10^15 M_solar.Comment: 44 pages, 11 figures, accepted for publication in Ap
Carbon nanotube sensor for vibrating molecules
The transport properties of a CNT capacitively coupled to a molecule
vibrating along one of its librational modes are studied and its transport
properties analyzed in the presence of an STM tip. We evaluate the linear
charge and thermal conductances of the system and its thermopower. They are
dominated by position-dependent Franck-Condon factors, governed by a
position-dependent effective coupling constant peaked at the molecule position.
Both conductance and thermopower allow to extract some information on the
position of the molecule along the CNT. Crucially, however, thermopower sheds
also light on the vibrational levelspacing, allowing to obtain a more complete
characterization of the molecule even in the linear regime
A dual output polarimeter devoted to the study of the Cosmic Microwave Background
We have developed a correlation radiometer at 33 GHz devoted to the search
for residual polarization of the Cosmic Microwave Background (CMB). The two
instruments`s outputs are linear combination of two Stokes Parameters (Q and U
or U and V). The instrument is therefore directly sensitive to the polarized
component of the radiation (respectively linear and circular). The radiometer
has a beam-width oif 7 or 14 deg, but it can be coupled to a telescope
increasing the resolution. The expected CMB polarization is at most a part per
milion. The polarimeter has been designed to be sensitive to this faint signal,
and it has been optimized to improve its long term stability, observing from
the ground. In this contribution the performances of the instrument are
presented, together with the preliminary test and observations.Comment: 12 pages, 6 figures, in print on the Proc. SPIE Conf. - August 200
Bimodal AGNs in Bimodal Galaxies
By their star content, the galaxies split out into a red and a blue
population; their color index peaked around u-r=2.5 or u-r=1, respectively,
quantifies the ratio of the blue stars newly formed from cold galactic gas, to
the redder ones left over by past generations. On the other hand, upon
accreting substantial gas amounts the central massive black holes energize
active galactic nuclei (AGNs); here we investigate whether these show a
similar, and possibly related, bimodal partition as for current accretion
activity relative to the past. To this aim we use an updated semianalytic
model; based on Monte Carlo simulations, this follows with a large statistics
the galaxy assemblage, the star generations and the black hole accretions in
the cosmological framework over the redshift span from z=10 to z=0. We test our
simulations for yielding in close detail the observed split of galaxies into a
red, early and a blue, late population. We find that the black hole accretion
activities likewise give rise to two source populations: early, bright quasars
and later, dimmer AGNs. We predict for their Eddington parameter --
the ratio of the current to the past black hole accretions -- a bimodal
distribution; the two branches sit now under (mainly
contributed by low-luminosity AGNs) and around . These
not only mark out the two populations of AGNs, but also will turn out to
correlate strongly with the red or blue color of their host galaxies.Comment: 7 pages, accepted for publication in the Astrophysical Journa
X-raying the Star Formation History of the Universe
The current models of early star and galaxy formation are based upon the
hierarchical growth of dark matter halos, within which the baryons condense
into stars after cooling down from a hot diffuse phase. The latter is
replenished by infall of outer gas into the halo potential wells; this includes
a fraction previously expelled and preheated, due to momentum and energy fed
back by the SNe which follow the star formation. We identify such an implied
hot phase with the medium known to radiate powerful X-rays in clusters and in
groups of galaxies. We show that the amount of the hot component required by
the current star formation models is enough to be observable out to redshifts
in forthcoming deep surveys from {\it Chandra} and {\it XMM},
especially in case the star formation rate is high at such and earlier .
These X-ray emissions constitute a necessary counterpart, and will provide a
much wanted probe of the SF process itself (in particular, of the SN feedback),
to parallel and complement the currently debated data from optical and IR
observations of the young stars.Comment: 13 pages, 2 figures, accepted for publicatin in ApJ
Price discrimination in the Italian medical device industry: an empirical analysis
In this paper we ascertain that the Italian market for medical devices is characterized
by significant price dispersion. We have, therefore, carried out an econometric
analysis, as well as a Bayesian network analysis to verify if price dispersion is due
to price discrimination. We have found that ASLs (Aziende Sanitarie Locali) incur
higher procurement costs than AOs (Aziende Ospedaliere), which purchase larger
quantities as Centralized purchasing agencies do. Consequently, second-degree price
discrimination may be one of the causes of price differences. Price levels are also
inversely related to product age because of intense innovative activity, making product
differentiation more likely than price discrimination. Public procurement agents
located in Southern Italy pay higher prices than those located in Northern or Central
Italy. This is due to the higher probability for Southern procurement agents to purchase
from independent wholesalers, rather than from producers, implying a double
marginalization effect which raises final prices. It is also more likely that obsolete
medical devices are sold to Southern health care providers
- âŠ