120 research outputs found

    Citation

    Get PDF
    International audienc

    The Mediterranean Way a model to achieve the 2030 Agenda Sustainable Development Goals (SDGs)

    Get PDF
    The Mediterranean diet, inscribed in the representative list of the intangible cultural heritage of humanity by UNESCO in 2010, is inspired by the traditional food models of Italy, France, Greece, Spain, Portugal, Morocco, Cyprus and Croatia, all countries bordering the Mediterranean Sea. In particular, the Mediterranean area, geographically and territorially, has the characteristics to give value to past food models, which are products of the local territory (legumes, grains, vegetables, fruit, fish). The major aim is to encourage this type of food, which has always been one of the key points for biology studies in the fields of nutrition, food safety and biodiversity protection. The notion of "Mediterranean diet", or "Mediterranean way. How to eat well and stay well” (Keys & Keys, 1975) does not refer only to a nutritional model shared by many peoples of the Mediterranean basin, but embraces wider and deeper concepts that refer to a peculiar lifestyle, to a specific modality of production and consumption of food, to a certain way of conceiving the relationship between people and the environment. The Mediterranean way is a tool for achieving the goals of the 2030 Agenda for Sustainable Development

    Capsule Endoscopy in Suspected and Established Small Bowel Crohn’s Disease

    Get PDF
    Capsule endoscopy has recognized to be a very useful non-invasive tool for diagnosis and evaluation of the extension or the recurrence in Crohn’s disease (CD) patients. It has the advantage of outstanding visualization of small-bowel lesions undetectable by conventional endoscopy or radiologic studies and has a good tolerability and safety in well-selected patients. In this chapter, we would like to evaluated the significant small bowel capsule endoscopy findings that can lead to better outcomes of diagnosis, classification, therapeutic management, and prognosis of patients with CD. Moreover, we would to discuss the specificity of the CE and to determine the place of the CE in the recurrence of CD and, for example, its role in monitoring drug response

    Biosensors for studies on adhesion-mediated cellular responses to their microenvironment

    Get PDF
    Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate. The combination of material science and surface chemistry aided in the creation of controllable environments to study cell mechanosensing and mechanotransduction. Biologically inspired materials tailored with specific bioactive molecules, desired physical properties and tunable topography have emerged as suitable tools to study cell behavior. Among these materials, synthetic cell interfaces with built-in sensing capabilities are highly advantageous to measure biophysical and biochemical interaction between cells and their environment. In this review, we discuss the design of micro and nanostructured biomaterials engineered not only to mimic the structure, properties, and function of the cellular microenvironment, but also to obtain quantitative information on how cells sense and probe specific adhesive cues from the extracellular domain. This type of responsive biointerfaces provides a readout of mechanics, biochemistry, and electrical activity in real time allowing observation of cellular processes with molecular specificity. Specifically designed sensors based on advanced optical and electrochemical readout are discussed. We further provide an insight into the emerging role of multifunctional micro and nanosensors to control and monitor cell functions by means of material design.Fil: Saffioti, Nicolas Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Cavalcanti Adam, Elisabetta Ada. Max Planck Institute for Medical Research. Department Of Cellular Biophysics; AlemaniaFil: Pallarola, Diego Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentin

    Altered miRNAs Expression Correlates With Gastroenteropancreatic Neuroendocrine Tumors Grades

    Get PDF
    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors that present a wide spectrum of different clinical and biological characteristics. Currently, tumor grading, determined by Ki-67 staining and mitotic counts, represents the most reliable predictor of prognosis. This time-consuming approach fails to reach high reproducibility standards thus requiring novel approaches to support histological evaluation and prognosis. In this study, starting from a microarray analysis of paraffin-embedded tissue specimens, we defined the miRNAs signature for poorly differentiated NETs (G3) compared to well-differentiated NETs (G1 and G2) consisting of 56 deregulated miRNAs. We identified 8 miRNAs that were expressed in all GEP-NETs grades but at different level. Among these miRNAs, miR-96-5p expression level was progressively higher from grade 1 to grade 3; inversely, its target FoxO1 expression decreased from grade 1 to grade 3. Our results reveal that the miRNAs expression profile of GEP-NET is correlated with the tumor grade, showing a potential advantage of miRNA quantification that could aid clinicians in the classification of common GEP-NETs subtypes. These findings could reliably support the histological evaluation of GEP-NETs paving the way toward personalized treatment approaches

    miR-369-3p modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response

    Get PDF
    Dendritic cells are the most important antigen-presenting cells that link the innate and acquired immune system. In our previous study, we identified that the upregulation of miR-369-3p suppresses the LPS-induced inflammatory response, reducing C/EBP-β, TNFα and IL-6 production. With the aim of gaining further insight into the biological function of miR-369-3p during acute inflammatory response, in the present study we identified novel gene targets of miR-369-3p and demonstrated the suppressive ability of these genes on the inflammatory dendritic cells. Bioinformatic analyses revealed that iNOS is a potential target of miR-369-3p. We demonstrated that the ectopic induction of miR-369-3p markedly reduced iNOS mRNA and protein as well as NO production. Moreover, we found that the upregulation of miR-369-3p decreased the release of TNFα, IL-6, IL-12, IL-1α, IL-1β in response to LPS, and increased the production of anti-inflammatory cytokines such as IL-10 and IL-1RA. In addition, LPS-induced nuclear translocation of NF-kB was inhibited by miR-369-3p. Levels of miR-369-3p were decreased in human inflamed regions of human intestine obtained from IBD patients. Our results provide novel additional information on miR-369-3p as a potential core of the signaling regulating the inflammatory response. These findings suggest that miR-369-3p should be considered as a potential target for the future development of new molecular therapeutic approaches

    A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins

    Get PDF
    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins avĂź3, avĂź5, avĂź6, avĂź8, a5Ăź1, aIIbĂź3, using homogenous ELISA-like solid phase binding assay.Postprint (published version

    Copresentation of BMP-6 and RGD ligands enhances cell adhesion and BMP-mediated signaling

    Get PDF
    We report on the covalent immobilization of bone morphogenetic protein 6 (BMP-6) and its co-presentation with integrin ligands on a nanopatterned platform to study cell adhesion and signaling responses which regulate the transdifferentiation of myoblasts into osteogenic cells. To immobilize BMP-6, the heterobifunctional linker MU-NHS is coupled to amine residues of the growth factor; this prevents its internalization while ensuring that its biological activity is maintained. Additionally, to allow cells to adhere to such platform and study signaling events arising from the contact to the surface, we used click-chemistry to immobilize cyclic-RGD carrying an azido group reacting with PEG-alkyne spacers via copper-catalyzed 1,3-dipolar cycloaddition. We show that the copresentation of BMP-6 and RGD favors focal adhesion formation and promotes Smad 1/5/8 phosphorylation. When presented in low amounts, BMP-6 added to culture media of cells adhering to the RGD ligands is less effective than BMP-6 immobilized on the surfaces in inducing Smad complex activation and in inhibiting myotube formation. Our results suggest that a local control of ligand density and cell signaling is crucial for modulating cell response

    Adherent cells avoid polarization gradients on periodically poled LiTaO\u3csub\u3e3\u3c/sub\u3e ferroelectrics

    Get PDF
    The response of fibroblast cells to periodically poled LiTaO3 ferroelectric crystals has been studied. While fibroblast cells do not show morphological differences on the two polarization directions, they show a tendency to avoid the field gradients that occur between polarization domains of the ferroelectric. The response to the field gradients is fully established after one hour, a time at which fibroblasts form their first focal contacts. If suspension cells, with a lower tendency to establish strong surface contacts are used, no influence of the field gradients is observed
    • …
    corecore