108 research outputs found

    FEASIBILITY STUDY OF HYBRID THERMOELECTRIC PLANTS USING CSP TECHNOLOGY AND FOSSIL FUEL: SIMULATION SCENARIOS

    Get PDF
    Due to the rapid advance in technology, a new generation of power plants has emerged: the concentrated solar power (CSP). It is a renewable energy system that can be combined with large-scale energy storage systems. CSP holds many promises for the countries with high direct solar radiation, as Brazil. However, there are many problems regarding the viability of these plants in the emerging countries such as high capital costs, lack of national technology and qualified professionals. Hybridization of existing power plants with solar energy could be a possible gateway for the technology deployment.  This paper presents the technical and economic feasibility analysis of a steam super-heater plant powered by CSP for electricity production. Such hybridization permits the reduction of CO2 emissions and retrenchment in the long term. In this context, the performances of four different systems of thermoelectric power generation were compared: (i) solar reheating - superheated steam generated by boiler and it expansion in the first turbine using CSP for reheating second expansion turbine; (ii) solar superheater - generating saturated steam in a boiler and superheating it using CSP; (iii) supercritical solar heater - saturated steam production in a boiler and heating at supercritical steam in CSP and (iv) conventional cycle and CSP working in parallel.  The direct irradiation data available at the Brazilian solar atlas were analyzed, looking for the best location of power plant installation. In addition to the solar resource data, other criteria as economic, environmental and availability of transmission lines were taken into account. The decision matrix with performance indicators helped in the decision-making process of location selection. Comparing to others scenarios the obtained results showed several advantages of scenario (iv) - conventional cycle and CSP working in parallel using solar power towers without thermal storage. Research result as well revealed Santa Maria da Vitória town, Bahia region, as a better place for plant construction using the selected scenario. The total capacity was determined to be 30 MWe in accordance with the incentives offered by 481/2012-ANEEL (Brazilian Agency) resolution.   Keywords: Concentrated solar power (CSP); Solar irradiation data; Hybrid thermoelectric; Reheating vapor cycle

    Rotational Surfaces in L3\mathbb{L}^3 and Solutions in the Nonlinear Sigma Model

    Full text link
    The Gauss map of non-degenerate surfaces in the three-dimensional Minkowski space are viewed as dynamical fields of the two-dimensional O(2,1) Nonlinear Sigma Model. In this setting, the moduli space of solutions with rotational symmetry is completely determined. Essentially, the solutions are warped products of orbits of the 1-dimensional groups of isometries and elastic curves in either a de Sitter plane, a hyperbolic plane or an anti de Sitter plane. The main tools are the equivalence of the two-dimensional O(2,1) Nonlinear Sigma Model and the Willmore problem, and the description of the surfaces with rotational symmetry. A complete classification of such surfaces is obtained in this paper. Indeed, a huge new family of Lorentzian rotational surfaces with a space-like axis is presented. The description of this new class of surfaces is based on a technique of surgery and a gluing process, which is illustrated by an algorithm.Comment: PACS: 11.10.Lm; 11.10.Ef; 11.15.-q; 11.30.-j; 02.30.-f; 02.40.-k. 45 pages, 11 figure

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    Latest results of dark matter detection with the DarkSide experiment

    Get PDF
    In this contribution the latest results of dark matter direct detection obtained by the DarkSide Collaboration are discussed. New limits on the scattering cross-section between dark matter particles and baryonic matter have been set. The results have been reached using the DarkSide-50 detector, a double-phase Time Projection Chamber (TPC) filled with 40Ar and installed at Laboratori Nazionali del Gran Sasso (LNGS). In 2018, the DarkSide Collaboration has performed three different types of analysis. The so-called high-mass analysis into the range between ∼ 10 GeV and ∼ 1000 GeV is discussed under the hypothesis of scattering between dark matter and Ar nuclei. The low-mass analysis, performed using the same hypothesis, extends the limit down to ∼1.8 GeV. Through a different hypothesis, that predicts dark matter scattering off the electrons inside of the Ar atom, it has been possible to set limits for sub-GeV dark matter masses

    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Get PDF
    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved

    Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Get PDF
    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill
    corecore