412 research outputs found

    Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach

    Full text link
    The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilities, which enable malicious users to steal assets from a contract or to cause damage. Vulnerabilities present a serious issue since contracts may handle financial assets of considerable value, and contract bugs are non-fixable by design. To help developers create more secure smart contracts, we introduce FSolidM, a framework rooted in rigorous semantics for designing con- tracts as Finite State Machines (FSM). We present a tool for creating FSM on an easy-to-use graphical interface and for automatically generating Ethereum contracts. Further, we introduce a set of design patterns, which we implement as plugins that developers can easily add to their contracts to enhance security and functionality

    Formal Verification and Validation of AADL Models

    Get PDF
    International audienceSafety-critical systems are increasingly difficult to com- prehend due to their rising complexity. Methodologies, tools and modeling formalisms have been developed to overcome this. Component-based design is an im- portant paradigm that is shared by many of them

    Leguminous lectins as tools for studying the role of sugar residues in leukocyte recruitment.

    Get PDF
    The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes

    Dopamine Innervation in the Thalamus: Monkey versus Rat

    Get PDF
    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease

    Satisfiability Modulo Transcendental Functions via Incremental Linearization

    Full text link
    In this paper we present an abstraction-refinement approach to Satisfiability Modulo the theory of transcendental functions, such as exponentiation and trigonometric functions. The transcendental functions are represented as uninterpreted in the abstract space, which is described in terms of the combined theory of linear arithmetic on the rationals with uninterpreted functions, and are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear functions. Suitable numerical techniques are used to ensure that the abstractions of the transcendental functions are sound even in presence of irrationals. Our experimental evaluation on benchmarks from verification and mathematics demonstrates the potential of our approach, showing that it compares favorably with delta-satisfiability /interval propagation and methods based on theorem proving

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Delivering sustainable, resilient and liveable cities via transformed governance

    Get PDF
    In the context of steadily declining Natural Capital and universal recognition of the imperative to reverse this trend before we get to the point that nature is not able to restore itself, cities have a crucial role to play. The UK Government commissioned a comprehensive study into the value of biodiversity, and by extension nature, reinforcing “why we should change our ways”—yet what is missing is the “how?”. This paper uniquely describes both the “how?” and a conclusive demonstration of the remarkable benefits of implementing it in a city. Critical to this process, it took a UK Parliamentary Inquiry to reveal that nature has become invisible within the economy, yet the ecological ecosystem services nature provides have enormous benefits to both people and the economy. Therefore integration—or seamless weaving—of urban greenspace and nature into people's lives and the places where they live, work, and spend their leisure time is vital. Moreover, what nature does not provide must be provided by engineered systems, and these have an economic cost; put another way, there are enormous cost savings to be made by taking advantage of what nature provides. In addressing these issues, this paper is the definitive paper from a 20-year portfolio of research on how to bring about transformative change in the complex system-of-systems that make up our cities, providing as it does the crucial in-depth research into the many diverse strands of governance—the last link in a chain of the creation, testing and proof of efficacy of methodologies underpinning a theory and practice of change for infrastructure and cities. The impact of this portfolio of research on Birmingham is two-fold: the Star Framework that placed natural environment considerations at the heart of all decision-making in the city, and the successful bid for the largest of the UK Future Parks Accelerator awards. While both are transformative in their different ways, yet mutually supportive, the latter enabled the design of a suite of system interventions from which the value of Birmingham's greenspaces is estimated to rise from £11.0 billion to £14.4 billion—a remarkable return on investment from the research's conceptualization of Birmingham's urban greenspace as a “business” (with its associated business models). In achieving this, the necessary enablers of thinking and practicing systemically, seamlessly working across disciplinary boundaries, an unusually strong focus on both the aspirations of all stakeholders and the context in question to define “the problem,” and the testing of proposed system intervention(s) both now and in the future have been iteratively combined. However, it is the critical enabling steps of identifying the complete range of value-generating opportunities that the interventions offer, formulating them into alternative business models to underpin the case for change and ensuring that they are synergistic with all the dimensions of governance that yielded the profound outcomes sought

    A novel non-peptidic agonist of the ghrelin receptor with orexigenic activity in vivo

    Get PDF
    Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand
    corecore