152 research outputs found

    Effective Field Theories on Non-Commutative Space-Time

    Get PDF
    We consider Yang-Mills theories formulated on a non-commutative space-time described by a space-time dependent anti-symmetric field ΞΌΜ(x)\theta^{\mu\nu}(x). Using Seiberg-Witten map techniques we derive the leading order operators for the effective field theories that take into account the effects of such a background field. These effective theories are valid for a weakly non-commutative space-time. It is remarkable to note that already simple models for ΞΌΜ(x)\theta^{\mu\nu}(x) can help to loosen the bounds on space-time non-commutativity coming from low energy physics. Non-commutative geometry formulated in our framework is a potential candidate for new physics beyond the standard model.Comment: 22 pages, 1 figur

    Evolution of supermassive black holes

    Full text link
    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked for in the early Universe, as very luminous quasars are detected up to redshift higher than z=6. These black holes evolve then in a hierarchical fashion, following the merger hierarchy of their host halos. Accretion of gas, traced by quasar activity, plays a fundamental role in determining the two parameters defining a black hole: mass and spin. A particularly intriguing epoch is the initial phase of SMBH growth. It is very challenging to meet the observational constraints at z=6 if BHs are not fed at very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Phosphorylation of huntingtin at residue T3 is decreased in Huntington’s disease and modulates mutant huntingtin protein conformation

    Get PDF
    Posttranslational modifications can have profound effects on the biological and biophysical properties of proteins associated with misfolding and aggregation. However, their detection and quantification in clinical samples and an understanding of the mechanisms underlying the pathological properties of misfolding- and aggregation-prone proteins remain a challenge for diagnostics and therapeutics development. We have applied an ultrasensitive immunoassay platform to develop and validate a quantitative assay for detecting a posttranslational modification (phosphorylation at residue T3) of a protein associated with polyglutamine repeat expansion, namely Huntingtin, and characterized its presence in a variety of preclinical and clinical samples. We find that T3 phosphorylation is greatly reduced in samples from Huntington\u2019s disease models and in Huntington\u2019s disease patients, and we provide evidence that bona-fide T3 phosphorylation alters Huntingtin exon 1 protein conformation and aggregation properties. These findings have significant implications for both mechanisms of disease pathogenesis and the development of therapeutics and diagnostics for Huntington\u2019s disease

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    ARGO-YBJ constraints on very high energy emission from GRBs

    Full text link
    The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy Îł\gamma-astronomy and cosmic ray researches. Due to the full coverage of a large area (5600m25600 m^2) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view (∌\sim2 sr) and is operated with a high duty cycle (>>90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper limits to fluence with 99% confidence level for 26 GRBs inside the field of view from June 2006 to January 2009 are set in the two energy ranges 10−-100 GeV and 10 GeV−-1 TeV.Comment: accepted for publication in Astroparticle Physic

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
    • 

    corecore