22 research outputs found

    Refinement of the convex shape model and tumbling spin state of (99942) Apophis using the 2020-2021 apparition data

    Get PDF
    Context. The close approach of the near-Earth asteroid (99942) Apophis to Earth in 2029 will provide a unique opportunity to examine how the physical properties of the asteroid could be changed due to the Eartha's gravitational perturbation. As a result, the Republic of Korea is planning a rendezvous mission to Apophis. Aims. Our aim was to use photometric data from the apparitions in 2020 2021 to refine the shape model and spin state of Apophis. Methods. Using thirty-six 1-to 2-meter-class ground-based telescopes and the Transiting Exoplanet Survey Satellite, we carried out a photometric observation campaign throughout the 2020 2021 apparition. The convex shape model and spin state were refined using the light-curve inversion method. Results. According to our best-fit model, Apophis is rotating in a short-axis mode with rotation and precession periods of 264.178 h and 27.38547 h, respectively. The angular momentum vector orientation of Apophis was found to be (275, 85) in the ecliptic coordinate system. The ratio of the dynamic moments of inertia of this asteroid was fitted to Iaa:a Iba:a Ica =a 0.64a:a 0.97a:a 1, which corresponds to an elongated prolate ellipsoid. These findings regarding the spin state and shape model can be used to both design the space mission scenario and investigate the impact of the Eartha's tidal force during close encounters

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate

    Host galaxy magnitude of OJ 287 from its colours at minimum light

    Get PDF
    OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B-V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V-R, V-I, and R-I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK =-26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation

    X-ray, UV, and optical time delays in the bright Seyfert galaxy Ark 120 with co-ordinated Swift and ground-based observations

    Get PDF
    International audienceWe report on the results of a multiwavelength monitoring campaign of the bright, nearby Seyfert galaxy Ark 120, using a ∼50-d observing programme with Swift and a ∼4-month co-ordinated ground-based observing campaign, pre-dominantly using the Skynet Robotic Telescope Network. We find Ark 120 to be variable at all optical, UV, and X-ray wavelengths, with the variability observed to be well correlated between wavelength bands on short time-scales. We perform cross-correlation analysis across all available wavelength bands, detecting time delays between emission in the X-ray band and the Swift V, B, and UVW1 bands. In each case, we find that the longer wavelength emission is delayed with respect to the shorter wavelength emission. Within our measurement uncertainties, the time delays are consistent with the τ ∼ λ^4/3 relation, as predicted by a disc reprocessing scenario. The measured lag centroids are τ_cent = 11.90 ± 7.33, 10.80 ± 4.08, and 10.60 ± 2.87 d between the X-ray and V, B, and UVW1 bands, respectively. These time delays are longer than those expected from standard accretion theory and, as such, Ark 120 may be another example of an active galaxy whose accretion disc appears to exist on a larger scale than predicted by the standard thin-disc model. Additionally, we detect further inter-band time delays: most notably between the ground-based I and B bands (τ_cent = 3.46 ± 0.86 d), and between both the Swift XRT and UVW1 bands and the I band (τ_cent = 12.34 ± 4.83 and 2.69 ± 2.05 d, respectively), highlighting the importance of co-ordinated ground-based optical observations

    High accuracy measurement of gravitational wave back-reaction in the OJ287 black hole binary

    No full text
    Blazar OJ287 exhibits large thermal flares at least twice every 12 years. The times of these flares have been predicted successfully using the model of a quasi-Keplerian eccentric black hole binary where the secondary impacts the accretion disk of the primary, creating the thermal flares. New measurements of the historical light curve have been combined with the observations of the 2015 November/December flare to identify the impact record since year 1886, and to constrain the orbit of the binary. The orbital solution shows that the binary period, now 12.062 years, is decreasing at the rate of 36 days per century. This corresponds to an energy loss to gravitational waves that is 6.5 ± 4 % less than the rate predicted by the standard quadrupolar gravitational wave (GW) emission. We show that the difference is due to higher order gravitational radiation reaction terms that include the dominant order tail contributions. © 2019 International Astronomical Union

    Multiwavelength Variability Power Spectrum Analysis of the Blazars 3C 279 and PKS 1510–089 on Multiple Timescales

    Get PDF
    International audienceWe present the results of variability power spectral density (PSD) analysis using multiwavelength radio to GeV γ-ray light curves covering timescales of decades/years to days/minutes for the blazars 3C 279 and PKS 1510−089. The PSDs are modeled as single power laws, and the best-fit spectral shape is derived using the “power spectral response” method. With more than 10 yr of data obtained with weekly/daily sampling intervals, most of the PSDs cover ∼2–4 decades in temporal frequency; moreover, in the optical band, the PSDs cover ∼6 decades for 3C 279 due to the availability of intranight light curves. Our main results are the following: (1) on timescales ranging from decades to days, the synchrotron and the inverse-Compton spectral components, in general, exhibit red-noise (slope ∼2) and flicker-noise (slope ∼1) type variability, respectively; (2) the slopes of γ-ray variability PSDs obtained using a 3 hr integration bin and 3 weeks total duration exhibit a range between ∼1.4 and ∼2.0 (mean slope = 1.60 ± 0.70), consistent within errors with the slope on longer timescales; (3) comparisons of fractional variability indicate more power on timescales ≤100 days at γ-ray frequencies compared to longer wavelengths, in general (except between the γ-ray and optical wavelengths for PKS 1510−089); (4) the normalization of intranight optical PSDs for 3C 279 appears to be a simple extrapolation from longer timescales, indicating a continuous (single) process driving the variability at optical wavelengths; and (5) the emission at optical/infrared wavelengths may involve a combination of disk and jet processes for PKS 1510−089

    Polarization and spectral energy distribution in OJ 287 during the 2016/17 outbursts

    No full text
    We report optical photometric and polarimetric observations of the blazar OJ 287 gathered during 2016/17. The high level of activity, noticed after the General Relativity Centenary flare, is argued to be part of the follow-up flares that exhibited high levels of polarization and originated in the primary black hole jet. We propose that the follow-up flares were induced as a result of accretion disk perturbations, travelling from the site of impact towards the primary SMBH. The timings inferred from our observations allowed us to estimate the propagation speed of these perturbations. Additionally, we make predictions for the future brightness of OJ 287. © 2017 by the authors
    corecore