561 research outputs found
Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol
Poly(vinyl alcohol) (PVA)-stabilized Au nanoparticles (NPs) were synthesized by colloidal methods in which temperature variations (−75 to 75 °C) and mixed H2O/EtOH solvent ratios (0, 50, and 100 vol/vol) were used. The resulting Au NPs were immobilized on TiO2 (P25), and their catalytic performance was investigated for the liquid phase oxidation of glycerol. For each unique solvent system, there was a systematic increase in the average Au particle diameter as the temperature of the colloidal preparation increased. Generation of the Au NPs in H2O at 1 °C resulted in a high observed activity compared with current Au/TiO2 catalysts (turnover frequency = 915 h–1). Interestingly, Au catalysts with similar average particle sizes but prepared under different conditions had contrasting catalytic performance. For the most active catalyst, aberration-corrected high angle annular dark field scanning transmission electron microscopy analysis identified the presence of isolated Au clusters (from 1 to 5 atoms) for the first time using a modified colloidal method, which was supported by experimental and computational CO adsorption studies. It is proposed that the variations in the populations of these species, in combination with other solvent/PVA effects, is responsible for the contrasting catalytic properties
Hydrogenation of CO on a silica surface: an embedded cluster approach
The sequential addition of H atoms to CO adsorbed on a siliceous edingtonite surface is studied with an embedded cluster approach, using density functional theory for the quantum mechanical (QM) cluster and a molecular force field for the molecular mechanical (MM) cluster. With this setup, calculated QM/MM adsorption energies are in agreement with previous calculations employing periodic boundary conditions. The catalytic effect of the siliceous edingtonite (100) surface on CO hydrogenation is assessed because of its relevance to astrochemistry. While adsorption of CO on a silanol group on the hydroxylated surface did not reduce the activation energy for the reaction with a H atom, a negatively charged defect on the surface is found to reduce the gas phase barriers for the hydrogenation of both CO and H2C = O. The embedded cluster approach is shown to be a useful and flexible tool for studying reactions on (semi-)ionic surfaces and specific defects thereon. The methodology presented here could easily be applied to study reactions on silica surfaces that are of relevance to other scientific areas, such as biotoxicity of silica dust and geochemistry
Lattice Relaxation and Charge-Transfer Optical Transitions Due to Self-Trapped Holes in Non-Stoichiometric LaMnO Crystal
We use the Mott-Littleton approach to evaluate polarisation energies in
LaMnO lattice associated with holes localized on both Mn cation and
O anion. The full (electronic and ionic) lattice relaxation energy for a
hole localized at the O-site is estimated as 2.4 eV which is appreciably
greater than that of 0.8 eV for a hole localized at the Mn-site, indicating on
the strong electron-phonon interaction in the former case. Using a Born-Haber
cycle we examine thermal and optical energies of the hole formation associated
with electron ionization from Mn, O and La ions in
LaMnO lattice. For these calculations we derive a phenomenological value
for the second electron affinity of oxygen in LaMnO lattice by matching the
optical energies of La and O hole formation with maxima of binding
energies in the experimental photoemission spectra. The calculated thermal
energies predict that the electronic hole is marginally more stable in the
Mn state in LaMnO host lattice, but the energy of a hole in the
O state is only higher by a small amount, 0.75 eV, rather suggesting that
both possibilities should be treated seriously. We examine the energies of a
number of fundamental optical transitions, as well as those involving
self-trapped holes of Mn and O in LaMnO lattice. The reasonable
agreement with experiment of our predicted energies, linewidths and oscillator
strengths leads us to plausible assignments of the optical bands observed. We
deduce that the optical band near 5 eV is associated with O(2p) - Mn(3d)
transition of charge-transfer character, whereas the band near 2.3 eV is rather
associated with the presence of Mn and/or O self-trapped holes in
non-stoichiometric LaMnO compound.Comment: 18 pages, 6 figures, it was presented partially at SCES-2001
conference in Ann Arbor, Michiga
C-axis lattice dynamics in Bi-based cuprate superconductors
We present results of a systematic study of the c axis lattice dynamics in
single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer
Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both
experimental data obtained by spectral ellipsometry on single crystals and
theoretical calculations. The calculations are carried out within the framework
of a classical shell model, which includes long-range Coulomb interactions and
short-range interactions of the Buckingham form in a system of polarizable
ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and
Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes
of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve
good agreement between the calculated A2u eigenfrequencies and the experimental
values of the c axis TO phonon frequencies which allows us to make a reliable
phonon mode assignment for all three Bi-based cuprate superconductors. We also
present the results of our shell model calculations for the Gamma-point A1g
symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is
based on the published experimental Raman spectra. The
superconductivity-induced phonon anomalies recently observed in the c axis
infrared and resonant Raman scattering spectra in trilayer Bi2223 are
consistently explained with the suggested assignment.Comment: 29 pages, 13 figure
Lattice Distortions Around a Tl+ Impurity in NaI:Tl+ and CsI:Tl+ Scintillators. An Ab Initio Study Involving Large Active Clusters
Ab initio Perturbed Ion cluster-in-the-lattice calculations of the impurity
centers NaI:Tl+ and CsI:Tl+ are pressented. We study several active clusters of
increasing complexity and show that the lattice relaxation around the Tl+
impurity implies the concerted movement of several shells of neighbors. The
results also reveal the importance of considering a set of ions that can
respond to the geometrical displacements of the inner shells by adapting
selfconsistently their wave functions. Comparison with other calculations
involving comparatively small active clusters serves to assert the significance
of our conclusions. Contact with experiment is made by calculating absorption
energies. These are in excellent agreement with the experimental data for the
most realistic active clusters considered.Comment: 7 pages plus 6 postscript figures, LaTeX. Submmited to Phys, Rev.
Multi-component Transparent Conducting Oxides: Progress in Materials Modelling
Transparent conducting oxides (TCOs) play an essential role in modern
optoelectronic devices through their combination of electrical conductivity and
optical transparency. We review recent progress in our understanding of
multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and
Al2O3, with a particular emphasis on the contributions of materials modelling,
primarily based on Density Functional Theory. In particular, we highlight three
major results from our work: (i) the fundamental principles governing the
crystal structures of multi-component oxide structures including (In2O3)(ZnO)n,
named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship
between elemental composition and optical and electrical behaviour, including
valence band alignments; (iii) the high-performance of amorphous oxide
semiconductors. From these advances, the challenge of the rational design of
novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on
"Semiconducting Oxides". In Press (2011
Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol
Poly(vinyl alcohol) (PVA)-stabilized Au nanoparticles (NPs) were synthesized by colloidal methods in which temperature variations (−75 to 75 °C) and mixed H2O/EtOH solvent ratios (0, 50, and 100 vol/vol) were used. The resulting Au NPs were immobilized on TiO2 (P25), and their catalytic performance was investigated for the liquid phase oxidation of glycerol. For each unique solvent system, there was a systematic increase in the average Au particle diameter as the temperature of the colloidal preparation increased. Generation of the Au NPs in H2O at 1 °C resulted in a high observed activity compared with current Au/TiO2 catalysts (turnover frequency = 915 h−1). Interestingly, Au catalysts with similar average particle sizes but prepared under different conditions had contrasting catalytic performance. For the most active catalyst, aberration-corrected high angle annular dark field scanning transmission electron microscopy analysis identified the presence of isolated Au clusters (from 1 to 5 atoms) for the first time using a modified colloidal method, which was supported by experimental and computational CO adsorption studies. It is proposed that the variations in the populations of these species, in combination with other solvent/PVA effects, is responsible for the contrasting catalytic properties
Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals
We discuss the adiabatic self-trapping of small polarons within the density
functional theory (DFT). In particular, we carried out plane-wave
pseudo-potential calculations of the triplet exciton in NaCl and found no
energy minimum corresponding to the self-trapped exciton (STE) contrary to the
experimental evidence and previous calculations. To explore the origin of this
problem we modelled the self-trapped hole in NaCl using hybrid density
functionals and an embedded cluster method. Calculations show that the
stability of the self-trapped state of the hole drastically depends on the
amount of the exact exchange in the density functional: at less than 30% of the
Hartree-Fock exchange, only delocalized hole is stable, at 50% - both
delocalized and self-trapped states are stable, while further increase of exact
exchange results in only the self-trapped state being stable. We argue that the
main contributions to the self-trapping energy such as the kinetic energy of
the localizing charge, the chemical bond formation of the di-halogen quasi
molecule, and the lattice polarization, are represented incorrectly within the
Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
Initiatives to increase colonoscopy capacity - is there an impact on polyp detection? A UK National Endoscopy Database analysis
\ua9 2023 Georg Thieme Verlag. All rights reserved.Background Mismatch between routine endoscopy capacity and demand means centres often implement initiatives to increase capacity, such as weekend working or using locums/agency staff (insourcing). There are concerns about whether increasing workload to meet demand could negatively impact quality. We investigated polyp detection, a key quality metric, in weekend vs weekday and insourced vs standard procedures using data from the UK National Endoscopy Database (NED). Methods We conducted a national retrospective cross-sectional study of diagnostic colonoscopies undertaken 01/01-04/04/2019. The primary outcome was mean number of polyps (MNP) and the secondary, polyp detection rate (PDR). Multi-level mixed-effect regression, fitting endoscopist as a random effect, was used to examine associations between procedure day (weekend/weekday) and type (insourced/standard) and these outcomes, adjusting for patient age, sex and indication. Results 92,879 colonoscopies (weekends: 19,977 (21.5%); insourced: 9,909 (10.7%)) were performed by 2,496 endoscopists. For weekend colonoscopies, patients were more often female and less often having screening-related procedures; for insourced colonoscopies, patients were younger and less often attending for screening-related procedures (all p<0.05). Case-mix adjusted MNP was significantly lower for weekend vs weekday (IRR=0.86, (95%CI 0.83-0.89)) and for insourced vs standard procedures (IRR=0.91, (95%CI 0.87-0.95)). MNP was highest for weekday standard procedures and lowest for weekend insourced procedures, but there was no interaction between procedure day and type. Similar associations were found for PDR. Conclusions Strategies to increase colonoscopy capacity may have adverse effects on polyp detection. Routine quality monitoring should be undertaken following such initiatives. Meantime, reasons for this unwarranted variation require investigation
Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion
Performing molecular dynamics simulations for all-atom models, we
characterize the conformational and structural relaxations of poly(ethylene
oxide) and poly(propylene oxide) melts. The temperature dependence of these
relaxation processes deviates from an Arrhenius law for both polymers. We
demonstrate that mode-coupling theory captures some aspects of the glassy
slowdown, but it does not enable a complete explanation of the dynamical
behavior. When the temperature is decreased, spatially heterogeneous and
cooperative translational dynamics are found to become more important for the
structural relaxation. Moreover, the transitions between the conformational
states cease to obey Poisson statistics. In particular, we show that, at
sufficiently low temperatures, correlated forward-backward motion is an
important aspect of the conformational relaxation, leading to strongly
nonexponential distributions for the waiting times of the dihedrals in the
various conformational statesComment: 13 pages, 13 figure
- …
