2,736 research outputs found

    Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Using STM topographic imaging and spectroscopy, we have investigated the adsorption of two thioether molecules, 1,2-bis(phenylthio)benzene and (bis(3-phenylthio)-phenyl)sulfane, on noble and transition metal surfaces. The two substrates show nearly antipodal behaviour. Whereas complexes with one or two protruding centres are observed on Au(111), only flat and uniform ad-structures are found on NiAl(110). The difference is ascribed to the possibility of the thioethers to form metal–organic complexes by coordinating lattice-gas atoms on the Au(111), while only the pristine molecules adsorb on the alloy surface. The metal coordination in the first case is driven by the formation of strong Au–S bonds and enables the formation of characteristic monomer, dimer and chain-like structures of the thioethers, using the Au atoms as linkers. A similar mechanism is not available on the NiAl, because no lattice gas develops at this surface at room temperature. Our work demonstrates how surface properties, i.e. the availability of mobile ad-species, determine the interaction of organic molecules with metallic substrates.DFG, EXC 314, Unifying Concepts in Catalysi

    SMAD3 contributes to ascending aortic dilatation independent of transforming growth factor-beta in bicuspid and unicuspid aortic valve disease

    Get PDF
    We sought to determine whether there are differences in transforming growth factor-beta (TGFß) signaling in aneurysms associated with bicuspid (BAV) and unicuspid (UAV) aortic valves versus normal aortic valves. Ascending aortic aneurysms are frequently associated with BAV and UAV. The mechanisms are not yet clearly defined, but similarities to transforming growth factor-beta TGFß vasculopathies (i.e. Marfan, Loeys-Dietz syndromes) are reported. Non-dilated (ND) and aneurysmal (D) ascending aortic tissue was collected intra-operatively from individuals with a TAV (N = 10ND, 10D), BAV (N = 7ND, 8D) or UAV (N = 7ND, 8D). TGFß signaling and aortic remodeling were assessed through immuno-assays and histological analyses. TGFß1 was increased in BAV/UAV-ND aortas versus TAV (P = 0.02 and 0.04, respectively). Interestingly, TGFß1 increased with dilatation in TAV (P = 0.03) and decreased in BAV/UAV (P = 0.001). In TAV, SMAD2 and SMAD3 phosphorylation (pSMAD2, pSMAD3) increased with dilatation (all P = 0.04) and with TGFß1 concentration (P = 0.04 and 0.03). No relationship between TGFß1 and pSMAD2 or pSMAD3 was observed for BAV/UAV (all P > 0.05). pSMAD3 increased with dilatation in BAV/UAV aortas (P = 0.01), whereas no relationship with pSMAD2 was observed (P = 0.56). Elastin breaks increased with dilatation in all groups (all P < 0.05). In TAV, elastin degradation correlated with TGFß1, pSMAD2 and pSMAD3 (all P < 0.05), whereas in BAV and UAV aortas, elastin degradation correlated only with pSMAD3 (P = 0.0007). TGFß signaling through SMAD2/SMAD3 contributes to aortic remodeling in TAV, whereas TGFß-independent activation of SMAD3 may underlie aneurysm formation in BAV/UAV aortas. Therefore, SMAD3 should be further investigated as a therapeutic target against ascending aortic dilatation in general, and particularly in BAV/UAV patients

    Influence of Aging on Bioaccumulation and Toxicity of Copper Oxide Nanoparticles and Dissolved Copper in the Sediment-Dwelling Oligochaete <i>Tubifex tubifex</i>:A Long-Term Study Using a Stable Copper Isotope

    Get PDF
    For engineered metal nanoparticles (NPs), such as copper oxide (CuO) NPs, the sediment is recognized as a major compartment for NP accumulation. Sediment-dwelling organisms, such as the worm Tubifex tubifex, will be at particular risk of metal and metal NP exposure. However, a range of complex transformation processes in the sediment affects NP bioavailability and toxicity as the contamination ages. The objective of this study was to examine bioaccumulation and adverse effects of CuO NPs in T. tubifex compared to dissolved Cu (administered as CuCl2) and the influence of aging of spiked sediment. This was done in a 28-day exposure experiment with T. tubifex incubated in clean sediment or freshly spiked sediment with different concentrations of dissolved Cu (up to 230 Όg g−1 dw) or CuO NPs (up to 40 Όg g−1 dw). The experiment was repeated with the same sediments after it had been aged for 2 years. To obtain a distinct isotopic signature compared to background Cu, both Cu forms were based on the stable isotope 65Cu (&gt;99%). The 28-day exposure to sediment-associated dissolved 65Cu and 65CuO NPs resulted in a clear concentration-dependent increase in the T. tubifex65Cu body burden. However, despite the elevated 65Cu body burdens in exposed worms, limited adverse effects were observed in either of the two experiments (e.g., above 80% survival in all treatments, low or no effects on the growth rate, feeding rate, and reproduction). Organisms exposed to aged sediments had lower body burdens of 65Cu than those exposed to freshly spiked sediments and we suggest that aging decreases the bioavailability of both 65Cu forms. In this study, the use of a stable isotope made it possible to use environmentally realistic Cu concentrations and, at the same time, differentiate between newly accumulated 65Cu and background Cu in experimental samples despite the high background Cu concentrations in sediment and T. tubifex tissue. Realistic exposure concentrations and aging of NPs should preferably be included in future studies to increase environmental realism to accurately predict the environmental risk of metal NPs

    Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation

    Get PDF
    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L−1). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption–oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles

    Association of dietary nitrate intake with the 15-year incidence of age-related macular degeneration

    Get PDF
    Background Dietary nitrate, found predominantly in green leafy vegetables and beetroot, is a precursor of nitric oxide. Under- or overproduction of nitric oxide is implicated in the etiology of several eye diseases. However, the potential influence of dietary nitrate intake on age-related macular degeneration (AMD) risk has not been assessed. Objective To investigate the temporal association between dietary nitrate intake (from both vegetable and nonvegetable sources) and the 15-year incidence of AMD, independent of potential confounders. Design A longitudinal cohort study conducted from 1992-1994 to 2007-2009. Participants/setting The Blue Mountains Eye Study is a population-based study of adults aged 49+ at baseline, from a region west of Sydney, Australia. At baseline, 2,856 participants with complete dietary data and AMD information were examined, and of these, 2,037 participants were re-examined 15 years later and thus included in incidence analysis. Main outcomes measured Incidence of AMD (main outcome) was assessed from retinal photographs. Dietary intake was assessed using a semiquantitative food-frequency questionnaire. Nitrate intake from vegetables and nonvegetable sources was calculated by use of a validated comprehensive database. Results After adjusting for age, sex, smoking, energy intake, fish consumption, and AMD risk alleles (complement factor H and age-related maculopathy susceptibility-2 single nucleotide polymorphisms), participants in the third quartile compared with those in the first quartile (reference group) of total nitrate and total vegetable nitrate intake had reduced risk of incident early AMD: odds ratio (OR) 0.61 (95% CI 0.41 to 0.90) and OR 0.65 (95% CI 0.44 to 0.96), respectively. Significant associations were not observed between the fourth vs first quartile of total nitrate and vegetable nitrate intake with incident early AMD: OR 0.74 (95% CI 0.51 to 1.08) and OR 0.69 (95% CI 0.47 to 1.00), respectively. Nonsignificant associations were also observed with 15-year incidence of late AMD and total nonvegetable nitrate intake. Conclusions These novel findings could have important implications, if the association between total nitrate intake and vegetable nitrate intake and 15-year incidence of early AMD is confirmed in other observational or intervention studies

    Dysregulation of Endothelial Nitric Oxide Synthase Does Not Depend on Hemodynamic Alterations in Bicuspid Aortic Valve Aortopathy

    Get PDF
    Background Bicuspid aortic valves (BAVs) predispose to ascending aortic aneurysm. Turbulent blood flow and genetic factors have been proposed as underlying mechanisms. Endothelial nitric oxide synthase (eNOS) has been implicated in BAV aortopathy, and its expression is regulated by wall shear stress. We hypothesized that if turbulent flow induces aneurysm formation in patients with a BAV, regional differences in eNOS expression would be observed in BAVs. Methods and Results Ascending aortic specimens were harvested intraoperatively from 48 patients with tricuspid aortic valve (19 dilated, 29 nondilated) and 38 with BAV (28 dilated, 10 nondilated) undergoing cardiac surgery. eNOS mRNA and protein concentration were analyzed at the convex and concave aortic wall. In nondilated aortas, eNOS mRNA and protein concentration were decreased in BAV compared with tricuspid aortic valve (all P0.05). However, eNOS expression was increased at the concave wall (versus convexity) in tricuspid aortic valve dilated aortas (all P<0.05). Conclusions Dysregulated eNOS occurs independent of dilation in BAV aortas, suggesting a potential role for aberrantly regulated eNOS expression in the development of BAV-associated aneurysms. The absence of regional variations of eNOS expression suggests that eNOS dysregulation in BAV aortas is the result of underlying genetic factors associated with BAV disease, rather than changes stimulated by hemodynamic alterations. These findings provide insight into the underlying mechanisms of aortic dilation in patients with a BAV

    CFHTLenS tomographic weak lensing: Quantifying accurate redshift distributions

    Get PDF
    The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-colour (u*g'r'i'z') photometry spanning 154 square degrees, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distribution function summed over galaxies provides an accurate representation of the galaxy redshift distribution accounting for random and catastrophic errors for galaxies with best fitting photometric redshifts z_p < 1.3. We present cosmological constraints using tomographic weak gravitational lensing by large-scale structure. We use two broad redshift bins 0.5 < z_p <= 0.85 and 0.85 < z_p <= 1.3 free of intrinsic alignment contamination, and measure the shear correlation function on angular scales in the range ~1-40 arcmin. We show that the problematic redshift scaling of the shear signal, found in previous CFHTLS data analyses, does not afflict the CFHTLenS data. For a flat Lambda-CDM model and a fixed matter density Omega_m=0.27, we find the normalisation of the matter power spectrum sigma_8=0.771 \pm 0.041. When combined with cosmic microwave background data (WMAP7), baryon acoustic oscillation data (BOSS), and a prior on the Hubble constant from the HST distance ladder, we find that CFHTLenS improves the precision of the fully marginalised parameter estimates by an average factor of 1.5-2. Combining our results with the above cosmological probes, we find Omega_m=0.2762 \pm 0.0074 and sigma_8=0.802 \pm 0.013.Comment: 17 pages, 12 figures, submitted to MNRA
    • 

    corecore