1,155 research outputs found

    Focusing on the essentials: learning for performance

    Get PDF
    As The World health report 2006 emphasized, there is increasing consensus that training programmes should focus on "know-how" instead of "know-all." Health workers need to know how to do the job they will be expected to do. IntraHealth International's Learning for performance: a guide and toolkit for health worker training and education programs offers a step-by-step, customizable approach designed to develop the right skills linked to job responsibilities. Using Learning for performance (LFP) yields more efficient training that focuses on what is essential for health workers to do their jobs and on effective learning methods, while addressing the factors that ensure application of new skills on the job

    Adding value to milk by increasing its protein and CLA contents

    Get PDF
    End of project reportThe mid-summer milk protein study was undertaken on 34 commercial dairy farms in 2005 to evaluate the influence of dietary and management variables on milk protein content in mid-season. Data on grass composition, genetic merit of the herds and milk protein content were collected and analysed by multiple regression. Both calving date and genetic merit for milk protein content were significantly associated with milk protein content and were used as adjustment factors when evaluating the association between measures of grass quality and milk protein content. Milk protein content was associated with grass OMD (P = 0.04) and NDF content (P = 0.02) but not with CP content (P = 0.80). It is concluded that herds calving earlier, with a greater genetic merit for milk protein content and consuming better quality pasture would have greater milk protein contents in mid-season

    CURA Operations and Communications. Tentative Recommendations.

    Get PDF
    Center for Urban and Regional Affairs, University of Minnesota

    Short-term serotonergic but not noradrenergic antidepressant administration reduces attentional vigilance to threat in healthy volunteers

    Get PDF
    Anxiety is associated with threat-related biases in information processing such as heightened attentional vigilance to potential threat. Such biases are an important focus of psychological treatments for anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) are effective in the treatment of a range of anxiety disorders. The aim of this study was to assess the effect of an SSRI on the processing of threat in healthy volunteers. A selective noradrenergic reuptake inhibitor (SNRI), which is not generally used in the treatment of anxiety, was used as a contrast to assess the specificity of SSRI effects on threat processing. Forty-two healthy volunteers were randomly assigned to 7 d double-blind intervention with the SSRI citalopram (20 mg/d), the SNRI reboxetine (8 mg/d), or placebo. On the final day, attentional and interpretative bias to threat was assessed using the attentional probe and the homograph primed lexical decision tasks. Citalopram reduced attentional vigilance towards fearful faces but did not affect the interpretation of ambiguous homographs as threatening. Reboxetine had no significant effect on either of these measures. Citalopram reduces attentional orienting to threatening stimuli, which is potentially relevant to its clinical use in the treatment of anxiety disorders. This finding supports a growing literature suggesting that an important mechanism through which pharmacological agents may exert their effects on mood is by reversing the cognitive biases that characterize the disorders that they treat. Future studies are needed to clarify the neural mechanisms through which these effects on threat processing are mediated

    Water quality changes during the first meter of managed aquifer recharge

    Get PDF
    The capacity of an artificial recharge field to alter organic matter and the bacterial flora of surface water was assessed by following changes in bacterial communities and composition of natural organic matter (NOM) over the first meter of infiltration depth. The sampling strategy applied in this study ensured that water samples consisted only of infiltrated water, excluding natural groundwater. Water was sampled at 50 and 100 cm below the surface of an infiltration basin divided into two halves; one side was dried and frozen and one was infiltrating water during the winter period prior to the sampling period. Bacterial cell counts, proportions of intact cells and community fingerprints were determined by flow cytometry, and NOM was characterized using total organic carbon (TOC), UV254 nm-absorbance (UVA) and fluorescence spectroscopy. Around 40% of the NOM was removed after only 50 cm. Protein-like components were reduced to a larger extent (45-50%) than the humic-like components (25%), suggesting removal of mostly biodegradable fractions of NOM. After only 50 cm of infiltration, about 99% total cell count (TCC) was removed. The flow cytometric data revealed that the bacterial communities collected after infiltration from the basin area that had been dried and frozen were more similar to those in the raw water. This suggests that drying and freezing the basin negatively impacted its treatment capacity. The results from this study highlight the importance of a well-developed biofilm and unsaturated zone for artificial recharge

    Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors

    Get PDF
    Degussa P-25 TiO2 bearing surface-anchored Pt(dcbpy)Cl-2 [dcbpy = 4,4\u27-dicarboxylic acid-2,2\u27-bipyridine] prepared with systematically varied surface coverage produced Pt-0 nanoparticles under bandgap illumination in the presence of methanol hole scavengers. Energy-dispersive X-ray spectroscopy confirmed the presence of elemental platinum in the newly formed nanoparticles during scanning transmission electron microscopy (STEM) eleriments. According to the statistical analysis of numerous STEM images, the Pt-0 nanoclusters were distributed in a segregated manner throughout the titania surface, ranging in size from 1 to 3 nm in diameter. The final achieved nanoparticle size and net hydrogen production were determined as a function of the Pt(dcbpy)Cl-2 surface coverage as well as other systematically varied experimental parameters. The hybrid Pt/TiO2 nanomaterials obtained upon complete decomposition of the Pt(dcbpy)Cl-2 precursor displayed higher photocatalytic activity (300 mu mol/h) for hydrogen evolution in aqueous suspensions when compared with platinized TiO2 derived from H2PtCl6 precursors (130 mu mol/h), as ascertained through gas chromatographic analysis of the photoreactor headspace under identical experimental conditions. The conclusion that H-2 was evolved from Pt-0 sites rather than from molecular Pt(dcbpy)Cl-2 entities was independently supported by Hg and CO poisoning experiments. The formation of small Pt nanopartides (1.5 nm in diameter) prevail at low surface coverage of Pt(dcbpy)Cl-2 on TiO2 (0.5 to 2% by mass) that exhibit enhanced turnover frequencies with respect to all other materials investigated, induding those produced from the in situ photochemical reduction of H2PtCl6 center dot Pt-II precursor absorption in the ultraviolet region appeared to be partially responsible for attenuation of the H-2 evolution rate at higher Pt(dcbpy)Cl-2 surface coverage. The nanoparticle size and hydrogen evolution characteristics of the surface-anchored materials generated through photodeposition were directly compared with those derived from chemical reduction using NaBH4. Finally, Degussa P-25 thin films deposited on FTO substrates enabled electrochemically induced (-1.0 V vs Ag/AgCl, pH 7.0, phosphate buffer) electron trapping (TiO2(e(-))) throughout the titania. After removal of the applied bias and the anaerobic introduction of Pt(dcbpy)Cl-2, the accumulated electrons reduce this molecular species to Pt-0 nanoparticles on the titania electrode surface, as confirmed by TEM measurements, with the concomitant production of H-2 gas. The combined experiments illustrate that TiO2(e(-)) generated with bandgap excitation or via electrochemical bias affords the reduction of Pt(dcbpy)Cl-2 to Pt-0 nanoparticles that in turn are responsible for heterogeneous hydrogen gas evolution
    • …
    corecore