343 research outputs found

    Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood

    Get PDF
    OBJECTIVE: To investigate the relation between breastfeeding, use of docosahexaenoic acid (DHA)-fortified formula and neuropsychological function in children. DESIGN: Prospective cohort study. SETTING: Southampton, UK. SUBJECTS: 241 children aged 4 years followed up from birth. MAIN OUTCOME MEASURES: IQ measured by the Wechsler Pre-School and Primary Scale of Intelligence (3rd edn), visual attention, visuomotor precision, sentence repetition and verbal fluency measured by the NEPSY, and visual form-constancy measured by the Test of Visual-Perceptual Skills (Non-Motor). RESULTS: In unadjusted analyses, children for whom breast milk or DHA-fortified formula was the main method of feeding throughout the first 6 months of life had higher mean full-scale and verbal IQ scores at age 4 years than those fed mainly unfortified formula. After adjustment for potential confounding factors, particularly maternal IQ and educational attainment, the differences in IQ between children in the breast milk and unfortified formula groups were severely attenuated, but children who were fed DHA-fortified formula had full-scale and verbal IQ scores that were respectively 5.62 (0.98 to 10.2) and 7.02 (1.56 to 12.4) points higher than children fed unfortified formula. However, estimated total intake of DHA in milk up to age 6 months was not associated with subsequent IQ or with score on any other test. CONCLUSIONS: Differences in children's intelligence according to type of milk fed in infancy may be due more to confounding by maternal or family characteristics than to the amount of long-chain polyunsaturated fatty acids they receive in milk

    The effect of hypoxia on PD-L1 expression in bladder cancer

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-05-19, accepted 2021-11-09, registration 2021-11-16, pub-electronic 2021-11-25, online 2021-11-25, collection 2021-12Publication status: PublishedAbstract: Introduction: Recent data has demonstrated that hypoxia drives an immunosuppressive tumour microenvironment (TME) via various mechanisms including hypoxia inducible factor (HIF)-dependent upregulation of programmed death ligand 1 (PD-L1). Both hypoxia and an immunosuppressive TME are targetable independent negative prognostic factors for bladder cancer. Therefore we sought to investigate whether hypoxia is associated with upregulation of PD-L1 in the disease. Materials and methods: Three human muscle-invasive bladder cancer cell lines (T24, J82, UMUC3) were cultured in normoxia (20% oxygen) or hypoxia (1 and 0.1% oxygen) for 24 h. Differences in PD-L1 expression were measured using Western blotting, quantitative polymerase chain reaction (qPCR) and flow cytometry (≥3 independent experiments). Statistical tests performed were unpaired t tests and ANOVA. For in silico work an hypoxia signature was used to apply hypoxia scores to muscle-invasive bladder cancers from a clinical trial (BCON; n = 142) and TCGA (n = 404). Analyses were carried out using R and RStudio and statistical tests performed were linear models and one-way ANOVA. Results: When T24 cells were seeded at < 70% confluence, there was decreased PD-L1 protein (p = 0.009) and mRNA (p < 0.001) expression after culture in 0.1% oxygen. PD-L1 protein expression decreased in both 0.1% oxygen and 1% oxygen in a panel of muscle-invasive bladder cancer cells: T24 (p = 0.009 and 0.001), J82 (p = 0.008 and 0.013) and UMUC3 (p = 0.003 and 0.289). Increasing seeding density decreased PD-L1 protein (p < 0.001) and mRNA (p = 0.001) expression in T24 cells grown in both 20 and 1% oxygen. Only when cells were 100% confluent, were PD-L1 protein and mRNA levels higher in 1% versus 20% oxygen (p = 0.056 and p = 0.037). In silico analyses showed a positive correlation between hypoxia signature scores and PD-L1 expression in both BCON (p = 0.003) and TCGA (p < 0.001) cohorts, and between hypoxia and IFNγ signature scores (p < 0.001 for both). Conclusion: Tumour hypoxia correlates with increased PD-L1 expression in patient derived bladder cancer tumours. In vitro PD-L1 expression was affected by cell density and decreased PD-L1 expression was observed after culture in hypoxia in muscle-invasive bladder cancer cell lines. As cell density has such an important effect on PD-L1 expression, it should be considered when investigating PD-L1 expression in vitro

    Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer

    Get PDF
    Abstract Background The presence of hypoxia is a poor prognostic factor in prostate cancer and the hypoxic tumor microenvironment promotes radioresistance. There is potential for drug radiotherapy combinations to improve the therapeutic ratio. We aimed to investigate whether hypoxia-associated genes could be used to identify FDA approved drugs for repurposing for the treatment of hypoxic prostate cancer. Methods Hypoxia associated genes were identified and used in the connectivity mapping software QUADrATIC to identify FDA approved drugs as candidates for repurposing. Drugs identified were tested in vitro in prostate cancer cell lines (DU145, PC3, LNCAP). Cytotoxicity was investigated using the sulforhodamine B assay and radiosensitization using a clonogenic assay in normoxia and hypoxia. Results Menadione and gemcitabine had similar cytotoxicity in normoxia and hypoxia in all three cell lines. In DU145 cells, the radiation sensitizer enhancement ratio (SER) of menadione was 1.02 in normoxia and 1.15 in hypoxia. The SER of gemcitabine was 1.27 in normoxia and 1.09 in hypoxia. No radiosensitization was seen in PC3 cells. Conclusion Connectivity mapping can identify FDA approved drugs for potential repurposing that are linked to a radiobiologically relevant phenotype. Gemcitabine and menadione could be further investigated as potential radiosensitizers in prostate cancer

    Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.

    Get PDF
    BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients

    Phosphatidylinositide 3-kinase (PI3K) and PI3K-related kinase (PIKK) activity contributes to radioresistance in thyroid carcinomas.

    Get PDF
    Anaplastic (ATC) and certain follicular thyroid-carcinomas (FTCs) are radioresistant. The Phosphatidylinositide 3-kinase (PI3K) pathway is commonly hyperactivated in thyroid-carcinomas. PI3K can modify the PI3K-related kinases (PIKKs) in response to radiation: How PIKKs interact with PI3K and contribute to radioresistance in thyroid-carcinomas is unknown. Further uncertainties exist in how these interactions function under the radioresistant hypoxic microenvironment. Under normoxia/anoxia, ATC (8505c) and FTC (FTC-133) cells were irradiated, with PI3K-inhibition (via GDC-0941 and PTEN-reconstitution into PTEN-null FTC-133s) and effects on PIKK-activation, DNA-damage, clonogenic-survival and cell cycle, assessed. FTC-xenografts were treated with 5 × 2 Gy, ± 50 mg/kg GDC-0941 (twice-daily; orally) for 14 days and PIKK-activation and tumour-growth assessed. PIKK-expression was additionally assessed in 12 human papillary thyroid-carcinomas, 13 FTCs and 12 ATCs. GDC-0941 inhibited radiation-induced activation of Ataxia-telangiectasia mutated (ATM), ATM-and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Inhibition of ATM and DNA-PKcs was PI3K-dependent, since activation was reduced in PTEN-reconstituted FTC-133s. Inhibition of PIKK-activation was greater under anoxia: Consequently, whilst DNA-damage was increased and prolonged under both normoxia and anoxia, PI3K-inhibition only reduced clonogenic-survival under anoxia. GDC-0941 abrogated radiation-induced cell cycle arrest, an effect most likely linked to the marked inhibition of ATR-activation. Importantly, GDC-0941 inhibited radiation-induced PIKK-activation in FTC-xenografts leading to a significant increase in time taken for tumours to triple in size: 26.5 ± 5 days (radiation-alone) versus 31.5 ± 5 days (dual-treatment). PIKKs were highly expressed across human thyroid-carcinoma classifications, with ATM scoring consistently lower. Interestingly, some loss of ATM and DNA-PKcs was observed. These data provide new insight into the mechanisms of hypoxia-associated radioresistance in thyroid-carcinoma

    STROGAR – STrengthening the Reporting Of Genetic Association studies in Radiogenomics

    Get PDF
    AbstractDespite publication of numerous radiogenomics studies to date, positive single nucleotide polymorphism (SNP) associations have rarely been reproduced in independent validation studies. A major reason for these inconsistencies is a high number of false positive findings because no adjustments were made for multiple comparisons. It is also possible that some validation studies were false negatives due to methodological shortcomings or a failure to reproduce relevant details of the original study. Transparent reporting is needed to ensure these flaws do not hamper progress in radiogenomics. In response to the need for improving the quality of research in the area, the Radiogenomics Consortium produced an 18-item checklist for reporting radiogenomics studies. It is recognised that not all studies will have recorded all of the information included in the checklist. However, authors should report on all checklist items and acknowledge any missing information. Use of STROGAR guidelines will advance the field of radiogenomics by increasing the transparency and completeness of reporting
    • …
    corecore