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Abstract

Purpose:

To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic

contrast enhanced (DCE) MRI studies of solid tumors.

Theory:

Quantitative DCE-MRI requires an estimate of pre-contrast T1, which is obtained prior to fitting a tracer

kinetic model. As T1 mapping and tracer kinetic signal models are both a function of pre-contrast T1 it

was hypothesized that its joint estimation would improve the accuracy and precision of both pre-contrast

T1 and tracer kinetic model parameters.

Methods:

Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for

standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients.

Methods were compared under a number of experimental conditions.

Results:

In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated

parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed

in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42

conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed

in 18 of 21 conditions (between 4.6% and 38%).

Conclusion:

Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly

rather than sequentially.

Key words: DCE-MRI, tracer kinetic modeling, joint estimation, precision, accuracy, heterogeneity,

two-compartment exchange model
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Introduction

The goal of quantitative dynamic contrast enhanced (DCE) MRI is to estimate tracer kinetic model

parameters for a tissue of interest. To fit a tracer kinetic model to DCE-MRI data, MR signal intensity

must first be converted to contrast agent concentration, a process which requires an estimate of pre-

contrast T1 (T1,0) (1). Errors in T1,0 will propagate through to errors in estimates of contrast agent

concentration, eventually affecting the tracer kinetic parameters of interest (2, 3). To be clinically useful,

acquisition times for T1 mapping data should be of the order of seconds-minutes, discounting the use of

gold standard methods (e.g. multi-point inversion recovery spin-echo sequences). Faster techniques using

gradient echo turboFLASH sequences have been proposed (4, 5) and T1 estimates using these methods

agree well with their spin-echo counterparts (4), however acquisition times are still too long in some

applications, especially if other quantitative imaging acquisitions such as diffusion weighted MRI are

required. Many DCE-MRI studies within the last 15 years (6, 7, 8, 9) have opted to perform T1 mapping

using the spoiled gradient recalled echo (SPGR) variable flip angle (VFA) technique (10), which is less

accurate and precise than multi-point methods (11, 12), but can provide the required coverage in a matter

of seconds.

Image noise contributes significant error to VFA T1 estimates (13). Noise can be minimized by acquiring

multiple signal averages, however this increases acquisition time reducing the benefits of the VFA method

compared to more accurate T1 mapping techniques. In the context of DCE-MRI, multiple dynamic

contrast enhanced images are acquired following the VFA data. Often the same sequences are used for

both acquisitions, however information about T1,0 within the dynamic acquisitions is then ignored. Since

both VFA and dynamic signal models are a function of T1,0, such information could theoretically be

included during its estimation by jointly fitting signal models to VFA and dynamic data. Work outside

the field of MRI showed that joint fitting of signal models which share parameters can improve the

accuracy and precision of parameter estimates compared to when models are fit separately (14, 15).

Recognizing that T1,0 is a common parameter to both VFA and dynamic signal models, we hypothesized

that joint fitting of these models would improve the accuracy and precision of T1,0 and tracer kinetic

parameter estimates. This paper describes the theory behind the standard sequential and proposed

joint estimation approaches. The hypothesis is then tested using the two-compartment exchange model

(2CXM) in well-controlled synthetic and clinical data. Additional experiments are presented in supporting

materials.
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Theory

Sequential estimation

This section describes the standard approach to estimate tracer kinetic parameters from SPGR VFA and

DCE-MRI data, and suggestions are made as to why it may be suboptimal. Tracer kinetic parameters

are estimated by fitting a model (e.g. 2CXM (16)) to concentration time courses. Since contrast agent

concentration cannot be measured directly using MRI, it must be inferred from measured signal time

courses using an estimate of T1,0. The tracer kinetic model can also be used to compute contrast agent

concentrations, which can be converted to idealized signal values (using the estimated T1,0) and fitted to

measured dynamic signal. This second approach is described in detail below.

In general, measured MR signal magnitude, y, at an arbitrary voxel can be modeled as:

y = s + ǫ (1)

where s is the underlying noise-free signal and ǫ is an independent and identically distributed (i.i.d)

random variable, modeling image noise. For image data acquired using an SPGR sequence, the underlying

noise-free signal can be modeled as (17):

s =
M0 sin θ(1 − e−

T R
T1 )

1 − cos (θ)e−
T R
T1

(2)

where TR is the repetition time, θ is the flip angle, and T1 and M0 are the spin-lattice relaxation time

and equilibrium longitudinal magnetization at the voxel respectively. Typically the echo time, TE, is

kept short such that signal decay due to T ∗

2 effects can be ignored. To differentiate between VFA and

dynamic flip angles, we use vector θv = [θv1
, θv2

, θv3
. . . θvN

] and scalar θd respectively, where N is the

number of distinct flip angles in the VFA set. The equilibrium longitudinal magnetization (M0) depends

on proton density and receive gain. In general, M0 may differ between corresponding voxels in VFA and

dynamic images and therefore M0,v and M0,d are defined respectively.

Assuming a signal to noise ratio > 3, noise is well approximated as Gaussian (ǫ ∼ N(0, η)), where η is

the standard deviation of the noise present in the images (18). Since noise may differ between VFA and

dynamic images we define ηv and ηd respectively. Substituting T1 = T1,0 and M0 = M0,v into Eqn 2,

estimates of T̂1,0 and M̂0,v are obtained from the VFA signal by maximizing the following log-likelihood

function with respect to T1,0 and M0,v:

log Lv = −N log(2πη2
v)

2
−

N∑

i = 1

(y(θvi
) − s(θvi

))2

2η2
v

(3)

4
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where y(θvi
) is the measured VFA signal at the voxel for flip angle θvi

and N is the total number of distinct

flip angles within the VFA image set. In the case of Gaussian errors, maximization of log-likelihood

functions is equivalent to minimization of the sum of squared residuals.

Next, T̂1,0 is used in conjunction with an estimate of the mean pre-contrast dynamic signal, ŝpre, to

obtain an estimate the equilibrium longitudinal magnetization at the voxel within the dynamic images,

M̂0,d. Eqn 2 can be restated as:

M̂0,d =
ŝpre(1 − cos (θd)e

−
T R

T̂1,0 )

sin θd(1 − e
−

T R

T̂1,0 )
(4)

where,

ŝpre =
1

npre

npre∑

j = 1

y(tj) (5)

where y(tj) is the measured dynamic signal at acquisition time tj and npre is the number of pre-contrast

dynamic time points.

After arrival of contrast agent at the voxel, a reduction in the T1 relaxation time is observed. Assuming

the fast exchange limit for water exchange, the T1 relaxation rate at dynamic acquisition time tj is given

by:

1

T1(tj)
= rC(tj) +

1

T̂1,0

(6)

where r is the T1 relaxivity of the contrast agent and C(tj) is the contrast agent concentration at time tj .

Substituting Eqn 6 into Eqn 2, with M0 = M̂0,d gives:

s(tj) =
M̂0,d sin θd(1 − e

−TR(rC(tj)+ 1

T̂1,0

)
)

1 − cos (θd)e
−TR(rC(tj)+ 1

T̂1,0

)
(7)

The concentration of contrast agent at the voxel, C(tj), can be modeled as a convolution between the

tissue’s impulse response function (IRF) and the tissue’s arterial input function (AIF). For the 2CXM,

the IRF is described by 4 microvascular parameters, p = [Fp, FE, vp, ve], where Fp is the plasma flow,

FE is the exchange flow, vp is the plasma volume and ve is the interstitial volume (19). Units for 2CXM

parameters are shown in Table 1. The tracer kinetic parameters p are estimated from the dynamic signal

by maximizing the following log-likelihood function with respect to p:

log Ld = −n log(2πη2
d)

2
−

n∑

j = 1

(y(tj) − s(tj))2

2η2
d

(8)
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where n is the number of dynamic time points.

Tracer kinetic analysis using this sequential approach is well-established but has three main shortcomings:

1. While dynamic fits resulting from sequential estimation may appear to fit the data well, error in

T̂1,0 and M̂0,d will cause the underlying dynamic likelihood function (Eqn. 8) to be erroneous,

causing the tracer kinetic parameters to be erroneous.

2. Substitution of VFA T̂1,0 into the dynamic signal model as a fixed parameter is statistically inefficient

because potentially useful T1,0 information within the dynamic images is ignored.

3. If M0,v = M0,d, statistical power is lost by making two estimates (M0,v and M0,d) of the same

underlying parameter.

Joint estimation

The problems identified above can be addressed by estimating T1,0, M0,v, M0,d, and p jointly rather

than sequentially. In this framework, T1,0 information within both the VFA and dynamic images is

allowed to contribute to the estimate of T1,0. Also, when M0,v = M0,d, a single equilibrium longitudinal

magnetization parameter can be estimated at each voxel, instead of two. To facilitate exposition, this

single estimate is called M0,d, even though it is estimated jointly from both VFA and dynamic images.

Joint estimation can be performed by simply maximizing a log-likelihood function resulting from the sum

of the VFA and dynamic log-likelihood functions used for sequential estimation:

[T̂1,0, M̂0,d, p̂] = arg max
T1,0, M0,d, p

(log Lv + log Ld) (9)

Methods

Well-controlled synthetic data were used to test the null hypothesis of no difference in 2CXM parameter

accuracy between sequential and joint estimation. Well-controlled synthetic data and clinical data from

36 bladder cancer patients (7) were used to test the null hypothesis of no difference in 2CXM parameter

precision between sequential and joint estimation. Accuracy of tracer kinetic parameters could not

be assessed in the clinical data because of the lack of ground truth. Accuracy of sequential and joint

T1,0 estimates were evaluated in 1532 voxels from a clinical prostate cancer study by comparing estimates

to independent inversion-recovery turbo-field echo (IR-TFE) measurements.

While it is hypothesized that joint estimation will improve the accuracy and precision of all estimated

parameters, joint estimation using highly erroneous dynamic data may be expected to result in poorer

estimates. Therefore, the effect of three sources of systematic error on sequential and joint parameter

estimates were investigated: errors due to B1 field inhomogeneity, errors due to underestimation of the

6
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AIF and errors due to overestimation of the AIF. The effects of B1 field inhomogeneity on sequential

and joint estimates were studied only in the synthetic data as B1 homogeneity could not be manipulated

retrospectively in the clinical dataset. While it may be possible in a future study to map the B1 field

using joint estimation, it was not investigated within the current paper.

A highly-realistic publicly-available software phantom generator (20) was used within a Monte Carlo

framework to simulate and analyze 100 liver tumor VFA images and DCE image series for each experimental

condition. For the main clinical experiment, VFA and DCE images from 36 bladder tumors were analyzed

within a residual bootstrapping framework. A random sample of voxels were selected from the synthetic

and clinical tumors and data from those voxels were used in each experiment. In each experimental

condition, Monte Carlo or bootstrap iteration, and each voxel in the sample, we estimated T1,0, M0,v,

M0,d, t0, Fp, FE, vp, and ve using sequential and joint estimation (t0 is the offset time between bolus

arrival at the arterial sampling point and at the tissue). To evaluate accuracy, the deviation between

an estimate and its correct value was computed. For precision, the deviation between an estimate and

its expected value was computed. Multivariate linear regression was used to estimate the difference in

accuracy and precision between joint and sequential estimates attributable to each experimental condition.

Point estimates and Bonferroni corrected 95% confidence intervals on the percentage improvement in

accuracy and precision due to joint estimation were tabulated for each parameter and experimental

condition. To determine the number of voxels to include in the experiments, an a priori sample size

calculation was made using G*Power (version 3.1.9.2.). Parameter maps were constructed for the synthetic

tumor and two representative tumors from the clinical bladder data. For the prostate experiment, the

null hypothesis of no difference in accuracy between sequential and joint estimates of T1,0 compared to

IR-TFE measurements was tested (see supporting materials). Software to run the experiments is available

at http://github.com/MRdep/Joint-fitting (21).

Synthetic data

Phantom anatomy was based on organ masks defined on end-exhale DCE-CT data from a single individual

with a liver tumor (tumor volume = 28447 mm3, 2040 voxels). Microvascular heterogeneity was simulated

by segmenting the tumor into two distinct regions representing a highly perfused, highly vascularized rim

and a poorly perfused, poorly vascularized core (Fig 1). In each tumor voxel, contrast agent kinetics

were simulated using the 2CXM. The AIF used to generate signal-time curves was measured from a

randomly selected patient in the clinical bladder cohort (Fig 2a, accurate AIF). Sampling distributions

for ground truth T1,0, M0,v, M0,d, t0, and 2CXM parameters are shown in Table 1. VFA and dynamic

image acquisition parameters were chosen to match the clinical bladder protocol: field of view (FOV) of

240 × 320 × 80 mm3; voxel size of 1.67 × 1.67 × 5.00 mm3; TR/TE = 3.2/1.2 ms; dynamic temporal

resolution of 2.5 s; and dynamic scan duration of 4 minutes. Source code to generate synthetic images are

available at http://www.qbi-lab.org/software.php.

7
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Insert figure 1 about here.

In the homogeneous B1 field condition, images were created using spatially uniform flip angles. These

were set equal to those prescribed in the clinical protocol: VFA flip angles of 5◦, 10◦ and 35◦ and a

dynamic flip angle of 25◦. In the inhomogeneous B1 field condition, images were created by randomly

varying the flip angle error across the imaging volume between 50% and 150% of the prescribed flip

angles. This range was chosen to represent a worst case scenario; B1 field inhomogeneities at 1.5 T and 3

T would typically not be this severe (22, 23, 24).

Insert table 1 about here.

Clinical data

Retrospective analysis was performed on VFA and DCE-MRI scans from 36 patients with muscle invasive

bladder cancer (age range 45–74 years, mean 63 years). All patients gave written informed consent

and approval was obtained from the local research ethics committee. Scanning was performed on a

1.5 T Siemens Magnetom Avanto MR scanner (Siemens Medical Solutions, Erlangen, Germany). A 2D

T2-weighted turbo spin echo scan (TR/TE = 4000/99 ms, NSA = 1) covering the same FOV as the

subsequent VFA and dynamic scans but with improved spatial resolution (voxel size of 0.63 × 0.63

× 5 mm3) was used for the purpose of defining a tumor ROI. For VFA and dynamic acquisitions, a

3D T1-weighted volumetric interpolated breath-hold examination (VIBE) sequence was employed with

the same scan parameters as the synthetic data, except with a SENSE factor of 2. VFA imaging was

performed with 5 signal averages. No averaging was performed during dynamic imaging. All images were

acquired in the transverse plane with the FOV encompassing the whole bladder (7).

Gadolinium-based contrast agent (Magnevist, Bayer-Schering Pharma AG, Berlin, Germany) was injected

as a 0.1 mmol/kg bolus with a power injector through a cannula placed in the antecubital vein. The

injection was administered 15 s into the dynamic acquisition at 3 ml/s, and was followed by a 20 ml

saline flush.

Tumor ROIs were delineated by two radiologists in consensus (S.B. and B.C. with 15 and 23 years

experience respectively, see acknowledgments) and transferred via down-sampling to the VFA and

dynamic images. AIFs were extracted using a semi-automatic procedure described previously (7). Signal

from the arterial ROI was converted to plasma contrast agent concentration using the SPGR equation

assuming a literature value for blood T1,0 of 1480 ms (25) and hematocrit of 0.42.

AIF errors

Direct measurement of AIFs from DCE-MRI data is difficult and errors can arise due to the presence

of inflow effects, partial volume effects, T ∗

2 decay and water exchange effects. To assess the impact of

8
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AIF error on sequential and joint parameter estimates, the true AIF (in the synthetic experiment) or

measured AIF (in the main clinical experiment) were scaled by factors of 0.5 and 1.5, leading to under

and over-estimated AIFs respectively. These scaling factors were based on errors in peak concentration

previously reported in phantom, pre-clinical and clinical data at 1.5 T due to partial volume effects,

inflow effects and T ∗

2 decay (26, 22, 27, 28, 29).

Monte Carlo and residual bootstrap analyses

Monte Carlo analysis (30) was performed on the synthetic data to facilitate the use of idealized distributions

for random measurement error processes. Random measurement error was modeled as samples from a

zero mean Gaussian distribution. The variance of the distributions for the VFA (η2
v) and dynamic data

(η2
d) were chosen to give SNRs of 5

√
5 and 5 respectively to mimic that expected in the clinical bladder

data. Residual bootstrap analysis (31) was performed in the main clinical experiment to facilitate the use

of natural distributions for random measurement error processes, without requiring us to assume errors

follow idealized distributions.

Model fitting

All model fitting was performed in IDL 8.2.2 (Exelis Visual Information Solutions, Boulder, Colorado,

USA) using the function ‘mpcurvefit’. Initial estimates of parameters were set at: T1,0 = 500 ms, M0,v =

5000 a.u., M0,d = 5000 a.u., Fp = 0.5 ml min−1 ml−1, FE = 0.5 ml min−1 ml−1 and ve = 0.2 ml ml−1.

An initial estimate for the offset time, t0,i (min) was calculated by fitting the Tofts model (1) to the initial

third of the dynamic time series, with t0 as a free parameter. For sequential estimation, the dynamic

signal model was fitted with Fp, FE, ve and t0 as free parameters. T1,0 and M0,d were fixed to estimates

obtained from VFA and pre-contrast dynamic data. For joint estimation, VFA and dynamic signal models

were fitted jointly with T1,0, M0,v, M0,d, Fp, FE, ve and t0 as free parameters, with M0,v constrained to

be equal to M0,d (supporting materials describe an experiment showing this is a reasonable assumption

for our clinical protocols). For both sequential and joint estimation, vp was fixed and incremented from

0 - 1 in 0.01 steps over the course of 100 repeated fits. The fit giving the maximum log-likelihood was

chosen. In all optimizations, the following parameter constraints were imposed: 0 < T1,0 < 5 s, 0 <

M0,v < 40000 a.u., 0 < M0,d < 40000 a.u. Fp > 0 ml min−1 ml−1, FE > 0 ml min−1 ml−1, 0 < ve < 1

ml ml−1, t0,i - 5
60 < t0 < t0,i + 5

60 min. Convolutions were computed using trapezoidal integration. In

both the synthetic and clinical experiments, ηv was set equal to ηd/
√

5 to account for differences in the

expected noise.

9
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Accuracy and precision

Accuracy was defined as the absolute relative difference between an estimate and its correct value,

λ = |(x̂ − x)/x|. To characterize the improvement in accuracy of joint estimation (λJ) over sequential

estimation (λS) we defined the ratio: Λ = λJ

λS , where the percentage improvement in accuracy is

(1 − Λ) × 100%.

Precision was defined as the absolute relative difference between an estimate and its expected value,

ω = |(x̂ − x̄)/x̄|. Within each experimental condition, the expected value x̄ at each voxel was estimated by

taking the mean over Monte Carlo or residual bootstrapping iterations. To characterize the improvement

in precision of joint estimation (ωJ ) over sequential estimation (ωS) we defined the ratio: Ω = ωJ

ωS , where

the percentage improvement in precision is (1 − Ω) × 100%.

Statistical analysis

Three multivariate linear regressions were performed to test hypotheses about accuracy for the synthetic

data, precision for the synthetic data and precision for the clinical data. Each multivariate linear model

took the following form:

zk = β0 + β1XU
k + β2XO

k + β3XB1

k + ǫk (10)

The subscript k indexes Monte Carlo or bootstrap iteration over all experimental conditions. On the

left hand side, zk is log Λ or log Ω for accuracy and precision respectively. The dependent variable was

defined on the log scale to improve the normality of the residuals; this corresponds to the difference in

log λ and log ω (i.e. log λJ − log λS and log ωJ − log ωS). On the right hand side, XU
k takes a value of

1 in the under-estimated AIF condition and 0 otherwise; XO
k takes a value of 1 in the over-estimated

AIF condition and 0 otherwise; XB1

k takes a value of 1 in the inhomogeneous B1 field condition and 0

otherwise; and ǫk is residual error. The model coefficient β0 corresponds to the sample mean of z under

the reference conditions (i.e. accurate/measured AIF and homogeneous B1 field); β1, β2 and β3 quantify

the residual mean z attributable to the under-estimated AIF condition, over-estimated AIF condition

and inhomogeneous B1 field condition respectively. In the clinical data, β3 = 0 because the B1 field could

not be manipulated. Point estimates and 95% confidence intervals on the percentage improvement in

accuracy and precision were computed by transforming from the log space to the original data space.

Statistical analysis was performed in R (Version 3.1, R Foundation for Statistical Computing, Vienna,

Austria).
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Sample size

Sample size calculations were based on detecting a medium effect size (Cohen’s f2 = 0.15) at statistical

power of 95% and significance level of 0.05, Bonferroni-corrected for the total number of inferences made.

For each of the 3 experimental conditions in the main clinical experiment, we randomly sampled 14 voxels

from each of the 36 tumors (504 voxels in total), and performed 100 iterations of the residual bootstrap

analysis on each, for a total sample size of just over 1.5 million. For each of the 6 conditions of the

synthetic experiment, we randomly sampled 504 voxels from the synthetic tumor and performed 100

iterations of the Monte Carlo analysis on each, for a total sample size of just over 3 million. The same

voxels were analyzed under each experimental condition, resulting in a repeated measures design.

Results

Figure 1 shows example synthetic images created using the software phantom generator. Figures 2a and 2b

show AIFs used in the synthetic experiment and for one example patient in the main clinical experiment.

The accurate AIF in Figure 2a was used to generate the DCE-MRI time courses in the synthetic tumor.

Figures 2c and 2d show Monte Carlo and residual bootstrap fits (n = 100) for example voxels in the

synthetic and clinical experiments. Figures 2e and 2f show corresponding density estimates obtained from

Monte Carlo and residual bootstrap experiments shown in 2c and 2d. A number of key differences between

sequential and joint fits were observed. For the synthetic data, joint VFA fits showed less variability in

shape compared to sequential fits. For all fits to dynamic data, modeled pre-contrast signal was less

variable with joint estimation. Poor fits obtained with sequential estimation in the under-estimated AIF

condition were not observed with joint estimation. In contrast to the synthetic experiment, joint fits to

clinical VFA data showed greater variability than sequential fits. Regardless of this, the effect of joint

estimation in the dynamic data mirrored that observed for the synthetic experiment.

In the synthetic data, parameter densities were narrower for sequential estimates of T1,0, suggesting

joint T1 estimates had lower absolute precision. However, since joint T1,0 estimates were also shifted to

higher values (which were also more accurate), relative precision was increased compared with sequential

estimates. In the clinical data, the shift to higher values was not so profound, and relative precision in

T1,0 was therefore degraded when using joint estimation. For 2CXM parameters, joint estimation led to

narrower distributions which were also shifted closer to ground truth, reflecting increased precision and

accuracy. Similar benefits in 2CXM parameter precision were observed in the clinical data.

Insert figure 2 about here.

Tables 2, 3, and 4 show results from the multivariate linear regression models. Tables 2 and 3 show

average percentage improvements in accuracy and precision due to joint estimation in the synthetic data.

Table 4 shows average percentage improvement in precision due to joint estimation in the main clinical
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experiment. In synthetic data, statistically significant improvements in accuracy were seen in 30 out of 42

cases (a case represents a unique parameter/experimental condition combination). Improvements for T1,0,

M0,d and t0 were between 7.7% and 49%. Improvements for the tracer kinetic parameters were between

1.8% and 21%. Statistically significant detriments were observed in 7 out of 42 cases, mainly in the

over-estimated AIF condition (between -5.4% and -20%), and in the case of vp under the inhomogeneous

B1 field condition (between -3.8% and -20%). Statistically significant improvements in precision were

seen in 35 of 42 cases (between 4.7% and 50%). No statistically significant decreases in precision were

observed. In clinical data, statistically significant improvements in precision were observed in 18 of 21

cases (between 4.6% and 38%). Statistically significant decreases in precision were observed for T1,0 in 2

of the remaining 3 cases (between -4.9% and -8.5%).

Insert table 2 about here.

Insert table 3 about here.

Insert table 4 about here.

Figure 3 shows T1,0, M0,d, Fp, vp, FE and ve maps for the synthetic experiment. Differences in joint

and sequential T1,0 maps were difficult to determine visually, however M0,d maps obtained using joint

estimation showed less speckle and better agreement with ground truth compared with sequential maps.

Under the homogeneous B1 field condition, the rim-core boundary present in the ground truth Fp map

could be clearly identified for both sequential and joint fitting methods. Under the inhomogeneous B1

field condition, the rim-core boundary could not be easily distinguished in the sequential maps, but could

be clearly identified in the joint estimation maps. Joint estimation also appeared to reduce the variability

in estimates of vp (less speckle).

Insert figure 3 about here.

Figure 4 shows T1,0, M0,d, Fp, vp, FE and ve maps for two example tumors from the main clinical

experiment. In tumor 1, joint Fp maps appeared less sensitive to error in the AIF, and joint vp maps

were less speckled than their sequential estimation counterparts. In example tumor 2, the number of

spurious vp, FE, and ve values observed near the tumor center were reduced with joint estimation.

Insert figure 4 about here.

Supporting Figure 1 shows sequential and joint estimates of T1,0 compared against independent IR-TFE

T1,0 measurements in 1532 voxels from a clinical prostate cancer study. On average, joint estimates of

T1,0 laid closer to IR-TFE measurements compared to sequential estimates. Using IR-TFE measurements

as an independent gold-standard, estimates of T1,0 obtained using joint estimation were significantly more

accurate than sequential estimates (improvement in mean relative error of 20%, P < 0.0001).
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Discussion

A novel method for improving the accuracy and precision of tracer kinetic parameters was proposed and

evaluated. The method recognizes that signal models used to describe VFA and DCE-MRI data share

parameters, and utilizes this shared information by jointly fitting models to the observed data.

Results from the synthetic experiment show that joint estimation leads to large improvements in accuracy

and precision of tracer kinetic parameter estimates under a range of experimental conditions. Improvements

were likely caused by increased accuracy and precision of T1,0 and M0,d, a consequence of including

additional pre-contrast T1 and equilibrium longitudinal magnetization information during fitting. With

more data contributing to estimates of T1,0 and M0,d, random signal errors were thought to have a smaller

effect on the log-likelihood function, therefore reducing the effect of noise on parameter estimates.

During joint estimation it was expected that errors in the dynamic data may contribute additional error to

T1,0, which would not occur during sequential estimation. This was tested by simulating a number of error

conditions in synthetic data and assessing accuracy of both methods under each condition. A comparison

was also made between sequential and joint estimates of T1,0 and independent measurements obtained

using an IR-TFE sequence in 1532 voxels from a clinical prostate cancer study (see supporting materials).

In the synthetic data, accuracy of T1,0 was improved with joint estimation under all error conditions,

suggesting that inclusion of T1,0 information stored within the dynamic images outweighs the potentially

detrimental effect of dynamic signal errors. In the prostate data, joint estimation led to improved accuracy

in T1,0 comparable to that observed in the synthetic data (taking IR-TFE measurements as gold standard,

improvements were 20% compared to 10-22% in the synthetic data).

While T1,0 accuracy was improved with joint estimation in a range of simulated imaging scenarios, these

did not always translate to improvements in accuracy of tracer kinetic parameters, especially when the

AIF was overestimated. However, in the case of accurate and underestimated AIFs, joint fitting led to

significant improvements in the accuracy of nearly all parameters. While degradations in the accuracy of

tracer kinetic parameters are not ideal, inaccuracy can in many cases be compensated via calibration.

Precision, on the other hand, is a stochastic characteristic and can only be increased by reducing the

variability of the measurement process. We therefore stress the importance of the significant improvements

in precision of tracer kinetic parameters observed with joint estimation. Increased precision can lead to

greater statistical power when aiming to detect longitudinal changes in a parameter within the same

patient over time (e.g. in a clinical trial setting) or when detecting differences in DCE-MRI parameters

between patients (e.g. for prediction of response to therapy). It also improves our ability to distinguish

tumor subregions, useful for analyzing tumor heterogeneity (32), as demonstrated in Figure 3.

Observed improvements in precision were similar in the synthetic and clinical bladder experiment however

there were some key differences. For example, ve precision was improved in the bladder data but not

the synthetic data. This was probably because absolute precision of ve was higher in the synthetic data,
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making improvements with joint estimation difficult to achieve. Poorer absolute precision in ve within the

bladder data may have been caused by tumor motion or reduced tracer back flux from the interstitial space

during imaging (compared to that simulated in the synthetic data) (33). Differences in the improvement of

T1,0 precision between synthetic and bladder experiments were also observed. In the synthetic experiment,

T1,0 precision was improved by around 20%, however in the clinical data T1,0 precision was degraded.

The latter observation is likely due to underestimation of the noise present in the clinical dynamic images

(possibly because tumor motion was not considered during noise estimation), which led to overweighting

of these data points within the joint log-likelihood function. Regardless, improvements were still observed

for M0,d, leading to significant improvements in the precision of 2CXM parameters.

This study has the following limitations. We could not assess accuracy of tracer kinetic parameters

in clinical data due to lack of ground truth, and rely on simulations only. While sequential and joint

estimation were evaluated across a wide range of simulated experimental conditions (B1 field errors and

AIF errors), the effect of patient motion and image artifacts were not considered. Furthermore, while

linear scaling of the AIF may have accurately simulated first order perturbations associated with inflow,

partial volume effects, T ∗

2 signal decay and water exchange effects, changes to arterial concentration time

curves due to these sources of error are likely to be non-linear. Further work should aim to more accurately

simulate specific AIF errors as well as patient motion, and assess the effect of such errors on jointly

estimated parameters. Future work could also study the possibility of mapping the B1 field with joint

estimation by including flip angle error as a free parameter during fitting. The current study evaluated

the benefits of joint estimation for a single model only, but in heterogeneous lesions the optimal tracer

kinetic model may vary from voxel to voxel. Since joint fits to VFA data depend on fits to the dynamic

data, joint estimation is likely to provide benefits only if the tracer kinetic model is valid for the tissue of

interest. Last, although Monte Carlo (30) and residual bootstrapping methods (31) are well-accepted

techniques for evaluating accuracy and precision, they do not enable differences in parameter estimates

caused by variations in patient positioning, scanner calibration, coil positioning, AIF selection etc. to be

taken into account. To evaluate these effects, the reproducibility of jointly estimated parameters should

be compared to sequential estimates in a clinical trial setting.

The hypothesis underlying the work of this paper was that joint estimation would improve the accuracy

and precision of tracer kinetic parameters by considering variables common to T1 mapping and dynamic

signal models. This hypothesis was supported by showing moderate to large statistically significant

improvements in accuracy (1.8% to 49%) and precision (4.7% to 50%) for most model parameters in most

experimental conditions. It is therefore recommended that investigators consider using joint estimation

instead of sequential estimation, particularly given that joint estimation is straightforward to implement

and requires no or little modification of commonly-used DCE-MRI protocols.
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Table 1: Ground truth parameters used to generate synthetic images

Parameter (units) Tumor Core Tumor Rim

T1,0 (ms) 1083 821

M0,v (a.u.) 10871 10500

M0,d (a.u.) 10871 10500

t0 (s) 5 5

Fp (ml min−1 ml−1) [0.10, 0.20]a [0.35, 0.45]a

FE (ml min−1 ml−1) [0.05, 0.10]a [0.05, 0.10]a

vp (ml ml−1) [0.00, 0.10]a [0.05, 0.15]a

ve (ml ml−1) [0.20, 0.30]a [0.20, 0.30]a

aParameters samped from uniform distributions with the given range. Ground truth values for T1,0, M0,v and
M0,d were based on measurements made in 6 patients with liver metastases (34). Ground truth 2CXM
parameters for each tumor region were based on previously published analyses of clinical data (35, 36).
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Figure Captions

1. Synthetic data used for evaluation of sequential and joint fitting methods. Figure part (a) shows

the central slice of the full phantom. Figure parts (b) and (c) show zoomed images of the synthetic

dynamic data without and with simulated B1 field inhomogeneities respectively.

2. Arterial input functions (a and b), example Monte Carlo and residual bootstrap fits (c and d) and

densities for each estimated parameter (e and f). The left column (a, c, and e) show data from the

synthetic tumor. The right column (b, d, and f) shows data from a randomly selected tumor in the

main clinical experiment. Figure parts (c) and (d) show all 100 Monte Carlo or residual bootstrap

fits for representative voxels taken from synthetic and bladder tumors respectively. Parts (e) and (f)

show corresponding densities for parameter estimates obtained from fits shown in the central row of

(c) and (d). In (e), black vertical lines represent ground truth.

3. Parametric maps for T1,0, M0,d, Fp, vp, FE and ve obtained using sequential and joint estimation for

an example slice of the synthetic tumor. In the homogeneous B1 field condition, jointly estimated

M0,d maps appear smoother than their sequential estimation counterparts. Differences in the

appearance for the other estimated parameter maps are difficult to discern visually. Under the

inhomogeneous B1 field condition, clear visual differences arise in the maps of Fp and vp, with joint

estimation maps showing less speckle. The reduction of speckle observed in the Fp map enables

rim-core subregions present in the ground truth map to be more clearly identified.

4. Parametric maps for T1,0, M0,d, Fp, vp, FE and ve obtained using sequential and joint estimation

for two example tumors. On average, estimates of T1,0 and M0,d appear higher when using joint

estimation (higher T1,0 and M0,d at the top of tumor 1 and center of tumor 2). In tumor 1, joint

estimates of Fp appear less sensitive to errors in the AIF, and vp maps are less speckled than their

sequential estimation counterparts. In tumor 2, spurious values of vp, FE, and ve observed in the

sequential maps occur less frequently with joint estimation.

Supporting Figure Captions

1. Comparison of T1,0 estimates in prostate tissue obtained using sequential and joint estimation

in VFA and DCE-MRI data against estimates obtained using an independent inversion-recovery

turbo field echo (IR-TFE) sequence, which was taken as gold-standard. Both sequential and joint

estimation overestimated T1,0 relative to IR-TFE measurements, however joint estimation led to a
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reduction in the mean relative error of 7%.
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Figure 1. Synthetic data used for evaluation of sequential and joint fitting methods. Figure part (a) shows 
the central slice of the full phantom. Figure parts (b) and (c) show zoomed images of the synthetic dynamic 

data without and with simulated B1 field inhomogeneities respectively.  
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Figure 2. Arterial input functions (a and b), example Monte Carlo and residual bootstrap fits (c and d) and 
densities for each estimated parameter (e and f). The left column (a, c, and e) show data from the synthetic 

tumor. The right column (b, d, and f) shows data from a randomly selected tumor in the main clinical 

experiment. Figure parts (c) and (d) show all 100 Monte Carlo or residual bootstrap fits for representative 
voxels taken from synthetic and bladder tumors respectively. Parts (e) and (f) show corresponding densities 
for parameter estimates obtained from fits shown in the central row of (c) and (d). In (e), black vertical 

lines represent ground truth.  
196x221mm (300 x 300 DPI)  
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Figure 3. Parametric maps for T1,0, M0,d, Fp, vp, FE and ve obtained using sequential and joint estimation for 
an example slice of the synthetic tumor. In the homogeneous B1 field condition, jointly estimated M0,d maps 
appear smoother than their sequential estimation counterparts. Differences in the appearance for the other 

estimated parameter maps are difficult to discern visually. Under the inhomogeneous B1 field condition, clear 
visual differences arise in the maps of Fp and vp, with joint estimation maps showing less speckle. The 

reduction of speckle observed in the Fp map enables rim-core subregions present in the ground truth map to 
be more clearly identified.  
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Figure 4. Parametric maps for T1,0, M0,d, Fp, vp, FE and ve obtained using sequential and joint estimation for 
two example tumors. On average, estimates of T1,0 and M0,d appear higher when using joint estimation 

(higher T1,0 and M0,d at the top of tumor 1 and center of tumor 2). In tumor 1, joint estimates of Fp appear 

less sensitive to errors in the AIF, and vp maps are less speckled than their sequential estimation 
counterparts. In tumor 2, spurious values of vp, FE, and ve observed in the sequential maps occur less 

frequently with joint estimation.  
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Supporting Materials

Comparison of sequential and joint VFA T1,0 estimates with reference mea-

surements

Introduction

The variable flip angle (VFA) method is commonly used in dynamic contrast-enhanced (DCE) MRI

examinations because it facilitates rapid estimation of pre-contrast T1 (T1,0). T1,0 is required to estimate

contrast agent concentrations and hence facilitate the fitting of tracer kinetic models to DCE-MRI data.

However, it is known that the VFA method is less accurate and precise than other T1,0 mapping methods.

Here we test the hypothesis that our proposed joint estimation method improves T1,0 accuracy compared

to the conventional sequential estimation approach, using independent measurements of T1,0 made using

an inversion-recovery turbo-field echo (IR-TFE) sequence in a clinical prostate cancer study. IR-TFE

measurements are more accurate than VFA measurements of T1,0, and were therefore taken as gold-

standard for this experiment.

Method

Analysis was performed using data from an ongoing clinical prostate cancer study being performed at

our center. At the time of analysis, analyzable data from 3 patients had been acquired. All patients

gave written informed consent and approval was obtained from the local research ethics committee. All

imaging was performed on a 1.5 T Philips Achieva MR scanner. High spatial resolution T2-w imaging

was performed to allow accurate delineation of the prostate in all patients. This was followed by VFA,

IR-TFE and DCE-MRI examinations, acquired at a lower spatial resolution (2.3 × 2.3 × 5.0 mm3), for

assessment of sequential and joint T1,0 accuracy. Field of view was matched between all examinations, and

matrix sizes were matched between VFA, IR-TFE and DCE-MRI acquisitions. Acquisition parameters

for the IR-TFE sequence were: TR/TE of 2.38/0.77 ms; shot interval of 4000 ms; matrix size of 176 x 176

x 20; flip angle of 12◦; and inversion times of 64 ms, 250 ms, 1000 ms, 2500 ms, and 3900 ms. Acquisition

parameters for the VFA and dynamic SPGR sequences were: TR/TE of 2.47/0.86 ms; variable flip angles

of 2◦, 10◦ and 20◦; NSA in the VFA data of 5, dynamic flip angle of 30◦; NSA in the dynamic data of

1, dynamic temporal resolution of 1.6 s; and dynamic acquisition time of 6.8 minutes. SENSE factors

of 2.5 were used for VFA, IR-TFE and dynamic imaging. Sequential and joint estimates of T1,0 were

generated in an identical manner to that described in the main paper.

The null hypothesis of no difference in mean relative error between sequential and joint estimates of

T1,0 (relative to IR-TFE measurements) was tested using a paired two-sided t-test with significance

criterion P < 0.05. A paired test was used to account for correlation between sequential and joint R3.2 removal

of statement of

independence
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estimates made at the same voxel.

Statistical analysis was performed at the voxel level (n = 1532) giving a power of 99% to detect a

difference in mean relative error of 10% assuming a standard deviation of 50%. Analyses were performed

in R (Version 3.1, R Foundation for Statistical Computing, Vienna, Austria). Bland Altman plots were

generated to show the relative error in T1,0 (sequential/joint T1,0 minus IR-TFE T1,0) across the range R3.1 clarification

of direction bias

of measured gold-standard T1,0 values.

Results

Acquisition time for VFA data was 24 s. Acquisition time for IR-TFE data was 4 minutes. Supporting

Figure 1 shows Bland Altman plots of the relative error in T1,0 for sequential and joint estimates. Both

sequential and joint estimation overestimated T1,0 relative to IR-TFE measurements. While joint esti- R3.1 clarification

of direction bias

mation caused a small number of estimates at low T1,0 values (between 1.0 s and 1.5 s) to have larger

relative error than sequential estimates (shown as a negative shift from zero error), a far greater number

of estimates in the same T1,0 range were shifted from positive relative error towards zero relative error,

leading to an overall reduction in the mean relative error. Mean relative error for sequential and joint

estimates of T1,0 were 35% and 28% respectively, corresponding to a reduction of 7.0% (95% CI 5.4-8.5%,

P -value < 0.0001). Using the same terminology as the main paper, joint estimation therefore led to an

improvement in the mean relative error of 20% (95% CI 15-24%, P -value < 0.0001), which agrees well

with results from the synthetic experiment (improvements of between 10-22%).

Equality of M0,v and M0,d

Introduction

Joint fitting of the equilibrium longitudinal magnetization relies on the assumption that M0,v = M0,d.

This condition is satisfied only if the MR scanner uses the same receive gain settings for variable flip angle

and dynamic imaging. Although steps were taken to avoid recalibration, DICOM attributes for scanner

receive gains were checked for equality (e.g. aFFT.SCALE.n.flFactor on Siemens, where n denotes the

receive channel), and phantom experiments to estimate M0,v and M0,d within variable flip angle and

dynamic images were performed. The phantom experiment for the bladder protocol is described in detail

below.

Method

A commercial uniformity phantom (Eurospin II T01 Flat Field Phantom, Diagnostic Sonar Ltd., Liv-

ingston, Scotland) was filled with copper sulphate solution and scanned using the bladder DCE-MRI

protocol described in the main paper. A circular region of interest (ROI) with diameter 0.9 times that

2
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of the phantom was placed in the central slice of each variable flip angle image. The equilibrium longitu-

dinal magnetization was estimated for variable flip angle images i and ROI voxels j using the following

steady-state SPGR equation:

M0,v(i, j) = S(i, j)(1 − cos (θvi)e
− TR

T1,0 )

sin θvi(1 − e
− TR

T1,0 )
(1)

where T1,0 was assumed to be 850 ms based on measurements described in (1). All other symbols were

defined in the main paper. It was assumed there was no calibration between acquisition of successive vari-

able flip angle images (i.e. M0,v(1, j) = M0,v(2, j) . . . M0,v(n, j)), and therefore the mean and standard

deviation of M0,v was calculated across all i and j.

For the dynamic images a similar procedure was performed. The equilibrium longitudinal magnetization

was estimated for all ROI voxels j at the 10th dynamic time point. A late time point was chosen to

ensure steady state conditions:

M0,d(10, j) = S(10, j)(1 − cos (θd)e− TR
T1,0 )

sin θd(1 − e
− TR

T1,0 )
(2)

the mean and standard deviation of M0,d was calculated across all j.

Results

The mean and standard deviation for M0,v and M0,d were found to be (12.6 ± 2.8) × 103 a.u. and (12.8

± 2.7) × 103 a.u. respectively. A two-tailed Students t-test was performed in R (version 3.1) to test the

null hypothesis of no difference between M0,v and M0,d. A P -value of 0.37 was observed, confirming our

belief that the scanner did not recalibrate between variable flip angle and dynamic imaging.
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Supporting Figures

Comparison of T1,0 estimates in prostate tissue obtained using sequential and joint estimation in VFA
and DCE-MRI data against estimates obtained using an independent inversion-recovery turbo field
echo (IR-TFE) sequence, which was taken as gold-standard. Both sequential and joint estimation

overestimated T1,0 relative to IR-TFE measurements, however joint estimation led to a reduction in the
mean relative error of 7%.

4

Page 34 of 35

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Bibliography

[1] Lerski R, McRobbie D. Eurospin II Magnetic Resonance Quality Assessment Test Objects. Diagnostic

Sonar Ltd, 1992.

5

Page 35 of 35

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


