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Urothelial carcinomas of the bladder are a heteroge-
neous group of tumours, although some histological sub-
variants are rare and sparsely reported in the literature.
Diagnosis of sub-variants from conventional urothelial
carcinoma can be challenging, as they may mimic the
morphology of other malignancies or benign tumours
and therefore their distinction is important. For the first
time, the spectral pathology of some of these sub-var-
iants has been documented by infrared microspectro-
scopy and an attempt made to profile their biochemistry.
It is important not only to identify and separate the can-
cer-associated epithelial tissue spectra from common tis-
sue features such as stroma or blood, but also to detect
the signatures of tumour sub-variants. As shown, their
spectroscopic signals can change dramatically as a conse-
quence of differentiation. Example cases are discussed
and compared with histological evaluations.
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1. Introduction

Urothelial carcinoma, or transitional cell carcinoma
(TCC), accounts for 85–90% of all epithelial tu-
mours of the bladder and urinary collecting system.
It is however, a very heterogeneous tumour, with a
pronounced ability for divergent differentiation. It
is common to find multiple patterns within a single
tumour which can simultaneously display such vari-
ety as sarcomatoid, small-cell, squamous and gland-
ular differentiation. The histological variants can
have different diagnoses and prognoses that impact
on tumour management [1]. For example, the pre-
sence of developed micro-papillary morphology in
otherwise conventional urothelial carcinoma is
associated with advanced tumour stage and poor
prognosis [2]. The development of an objective
method for identifying divergent histologies in
TCC has potential to enhance diagnostic capabil-
ities.

For unsupervised analysis of FTIR images, mul-
tivariate imaging techniques including principal
component analysis (PCA), K-means clustering and
hierarchical cluster analysis (HCA), have shown pro-
ficiency in the identification of spectral classes of tis-
sue types that can be directly compared to H & E
stained tissue sections. This has been demonstrated
for a number of tissue types including carcinoma of
the brain [3], cervix [4, 5], colon [6], kidney [7],
lymph node [8, 9], salivary gland [10] and skin [11,
12].

Unsupervised cluster techniques provide a non-
subjective method to identify diverse tissue struc-
tures and subsequent pathological analysis by a qua-
lified reviewer can provide regulation of the results.
Once tissue structures have been identified, how-
ever, it is often desirable to create a predictive mod-
el for future analysis of new patient samples. There
are many examples where supervised classification
algorithms such as linear discriminant analysis
(LDA) and artificial neural networks (ANNs) have
been applied to spectral classification of biological
cells and tissues [13–17]. Support vector machines
(SVMs) are a more recent breed of classification al-
gorithm. Although there are relatively fewer exam-
ples in the application of SVMs in spectral pathol-
ogy, the reports are impressive [18–20]. SVM theory
is originally designed for binary classification, where-
by a decision boundary either side of a hyperplane
separates two classes of training data. Ideally the
boundary is maximised to create the largest possible
distance between the separating hyperplane and the
two different class observations either side of it. Two
classes of test data are then mapped into the same
space and are class predicted based on which side of
the decision boundary they fall on. For multi-class
situations, a one-versus-rest (OVR) approach is used
whereby the data trained to a set of multiple binary

classifications. SVMs are suited to classification
where the number of features is large with respect to
the number of training instances, as the model com-
plexity of an SVM is unaffected by the number of
features in the training data. This makes SVMs an
ideal method for spectroscopists where the data is
often multidimensional. To complete the optimisa-
tion of class training, a global minimum is reached.
This is an advantage over similar classification tools
such as ANNs, that can potentially cease training at
a local minima [21].

Within the vibrational spectroscopy community,
Raman spectroscopy has been applied to study blad-
der cells and tissues [15, 22–27], yet there are very
few reports of characterisation by infrared spectro-
scopy [28, 29]. Here we report for the first time a
pilot investigation of identified sub-variants of TCC
that have been preliminarily characterised by Four-
ier transform infrared (FTIR) microspectroscopy
and chemometric analysis. We outline the case for
the utility of spectral pathology as a useful tool in
clinical diagnosis of challenging cases.

2. Experimental

2.1 Sample preparation

A retrospective pilot study was carried out in six pa-
tients with histologically proven high grade muscle
invasive urothelial carcinoma of the bladder (stage
pT2, Grade 3). Tissue samples were obtained by
transurethral resection: all tissue was collected with
full ethical approval and informed patient consent.
One block per cm of tumour diameter was formalin-
fixed and paraffin-embedded (FFPE). Pathological
staging utilised the (AJCC/UICC classifications),
grading was according to Royal College of Patholo-
gists (RCPath) guidelines (WHO 1973). Tissue sec-
tions 4 mm thick were floated onto calcium fluoride
substrates (76 � 26 � 1 mm). Paraffin was removed
following standard histology protocols; slides were
dipped 10 times and placed in xylene for 15 minutes
each in three xylene troughs in succession before
being dipped 10 times in 100% ethanol and air
dried.

Tumour biopsies, displayed a variety of morpho-
logical variants within the tissue; some of which are
uncommon, with only a small number of cases pre-
viously cited [30]. Supplementary Table 1 describes
the observed variants found within the experimental
samples and their known clinical and pathological
significance [31]. The samples chosen for study
(listed in Supplementary Table 2) were all from male
patients diagnosed with the same grade and stage of
TCC.
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2.2 Infrared imaging

Transmission mode FTIR imaging spectroscopy was
performed on a Varian 670-IR spectrometer coupled
with a Varian 620-IR imaging microscope (Agilent
Technologies, CA) equipped with a 128 � 128 pixel
liquid nitrogen-cooled Mercury-Cadmium-Telluride
(MCT) focal planar array detector. Spectra were col-
lected in the 950–3800 cm�1 range, at a spectral re-
solution of 4 cm�1, with the co-addition of 128 scans
for sample spectra, and 256 scans for the background
spectra. At a pixel resolution of ~ 5.5 mm, a tissue
sampling area of ~ 700 � 700 mm was captured per
hyperspectral image.

2.3 Histological staining

Haematoxylin and eosin (H & E) staining was per-
formed directly onto the infrared substrate tissues.
The slides were dipped 10 times in succession from
100%, 90% and 70% ethanol before being placed in
water. The slides were then placed in a trough con-
taining Gill’s haematoxylin for 3 minutes, washed for
1 minute in running water before blueing in alkaline
water (3 dips). The slides were then washed in run-
ning water for another minute, placed in a trough
filled with eosin for one minute, before finally wash-
ing in water for 1 minute. The samples were dehy-
drated through ethanol (70%, 90%, 100%) to xylene
and mounted with a cover slip using Pertex (DCM).

Where required, serial sections were floated onto
standard histology slides, dewaxed and stained for
periodic acid-Schiff (PAS); the samples were placed
in periodic acid reagent (1%) for 5 minutes, then
rinsed under tap water followed by distilled water.
The samples were then placed in Schiff reagent for
15 minutes before counter-staining with Gill’s hae-
matoxylin for 1 minute, and then dipped twice in al-
kaline water before being dehydrated and cover-
slipped. A section of liver was stained with PAS as a
control (Supp. Note 1a). Additionally, as PAS stains
positively for mucin as well as glycogen, a control
serial section was treated with diastase (a solution
containing amylase) for 30 minutes prior to PAS
staining. Glycogen presence is evidenced by loss of
staining after enzyme treatment when compared to
the untreated diastase sections (Supp. Note 1b).

All photomicrographs were captured using a Ni-
kon Eclipse 90i microscope equipped with colour
camera using either a 10� objective or 40� objective
with a total pixel resolution of 0.85 or 0.27 mm/pixel
respectively. To separate the PAS stain from the
counterstain, a colour deconvolution plug-in imple-
menting stain separation using Ruifrok and John-
ston’s method [32] was used with ImageJ (National
Institutes of Health) (Supp. Note 2).

2.4 Spectral pre-processing

A PCA-based noise reduction algorithm was used
for each image (containing 16384 spectra) by retain-
ing 30 principal components. The level of noise re-
moval was carefully monitored by observation of the
difference spectrum (noise reduced spectrum ex-
tracted from the raw spectrum) (See Supp. Note 3
for further explanation). The noise-reduced data was
then corrected with 20 iterations of the RMieS-
EMSC scattering correction algorithm using a Matri-
gel spectrum as the Refs. [33–35].

The images were quality-controlled by integration
of the amide I for threshold removal of blank regions
of substrate. A second threshold extraction was based
upon total intensity of absorbance, where particularly
high intensity signals from red blood cells and artefacts
as a consequence of thermal ablation were removed.

2.4 Data analysis

The spectral range was cut to 1000–1760 cm�1 and
2800–3000 cm�1 to remove spectral regions of no
biological interest, reducing subsequent computa-
tional processing time. The spectra were transformed
to the first derivative, with 13 point Salvitzky-Golay
smoothing. Mean-centred, vector normalised (vn-
mc) PCA was performed for each hyperspectral im-
age, retaining the scores for 10 PCs for dimension re-
duction [36–39]. K-means cluster analysis was per-
formed (with three replicates to avoid local minima
convergence) on the principal component scores
using a cosine distance metric to define the image by
an appropriate number of partitioned clusters. The
computational time for cluster analysis on the PC
scores was calculated at a fraction of a second per
image. Subsequent pseudo-colour cluster maps were
constructed, assigning a specific colour to each spec-
tral cluster and compared to the respective H & E
stain for definitive histopathological evaluation.
Using the defined cluster classes as a mask, the cor-
responding original spectra were extracted and vec-
tor normalised for subsequent evaluation. Table 1
lists the numbers of patients, infrared images and ex-
tracted spectra per sub-variant class.

175 random spectra were transformed to the sec-
ond derivative with 7 point Salvitzky-Golay smooth-
ing and analysed by vector-normalised, mean-
centred principal component analysis initially to es-
tablish discrimination between the classes of com-
piled spectra from different infrared images.

Finally, a radial basis function (RBF) support
vector machine (SVM) was used for classification of
the different spectral types [40]. 10,000 vector-nor-
malised (non-derivative) spectra were each extracted
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from the database of tissue structures previously
identified as conventional TCC (class 1), stroma
(class 2), micro-papillary (class 3), lymphocyte rich
(class 4) and clear cell (class 5) spectra respectively.
(The lipoid class was omitted from the classification
due to a low number of spectral observations.) The
dataset was randomly split into 5000 training spectra
and 5,000 testing spectra per class. Each instance in
the training set contained the class label and 251 fea-
tures. For an accurate prediction of test data, suita-
ble values for the RBF kernel parameters C and g
were determined by 3-fold cross-validation. This in-
volved dividing the training set into 3 subsets of
equal size. In sequential order, two subsets were
used for training and one subset for testing to quan-
tify the cross-validation accuracy as a percentage of
data which correctly classified. This was repeated in
a loop for different parameter selections to find the
best validation accuracy. The best parameters, yield-
ing a cross-validation accuracy of 98.088% were de-
termined as C (362.0387), g (90.5097). All computa-
tions were performed in Matlab (Mathworks Inc.).

3. Results and discussion

3.1 Cluster analysis of infrared images

The pseudo-colour k-means cluster maps derived
from principal component scores, demonstrated a
high level of pathological agreement with their sub-
sequent H & E micrographs. The following examples
detail a number of sub-variant morphologies of ur-
othelial carcinoma, some of which have been rarely
reported in the literature.

3.1.1 Micro-papillary sub-variant

The presence of developed micro-papillary morphol-
ogy in otherwise conventional urothelial carcinoma

is associated with advanced tumour stage and poor
prognosis [2]. Micro-papillary structure presents with
filliform projections that have secondary or tertiary
hierarchical branching. Tumour cell growth is usually
represented as small nests surrounded by lacunae
resembling vascular-lymphatic or retraction spaces
[30]. These spaces may be lined focally by flattened
spindled cells, or devoid of lining. There are cur-
rently no established imaging techniques to reliably
diagnose some types of deeply invasive urothelial
carcinoma of urinary bladder, particularly the micro-
papillary variant. Diagnosis of this variant by patho-
logical findings are therefore important [41]. The
most problematic pathologic issue, however, are
cases that present with metastatic disease where the
primary lesion is unknown. Establishing the ana-
tomic site of origin is challenging as several organs
may give rise to carcinomas with an identical micro-
papillary appearance. Carcinomas with micro-papil-
lary features have been described in the breast, urin-
ary bladder, lung, and ovary and are said to be mor-
phologically identical in the breast, urinary bladder,
and lung [42].

Figure 1a displays H & E regions from one pa-
tient sample that displayed typical micro-papillary
morphology. Chemical heterogeneity was explored
in the micro-papillary regions of interest as shown
in the two infrared images of total absorbance (Fig-
ure 1b). A two- class unsupervised cluster analysis
suggested regions of chemical distinction (Fig-
ure 1c). A notable difference was observed in the
ratio of the lipid vas(CH3) at ~ 2960 cm�1 versus
vas(CH2) at ~ 2920 cm�1. This was indicative of an
increase in short-chain lipids within certain regions
of each IR image (the K-means class coloured black
in Figure 1c) [43]. In both IR image A and IR image
B (Figure 1c), the areas of greater lipid contribution
(coloured black) directly corresponded to the H & E
photomicrograph regions with more extensive re-
traction spaces (For clarity, a superimposition can
be found in Supp. Note 4). An increase in absor-
bance of short chain lipid signals i.e. CH2 stretches,
suggests a change in lipid composition. This change
may be due to either a breakdown of molecules to
form longer-chain lipid bi-products, or an increase
in the assembly of lipid-based building blocks. This
is possibly due to greater disruption of the sur-
rounding stromal extracellular matrix (ECM). Disor-
ganisation of the ECM deregulates the behaviour of
stromal cells and facilitates tumour-associated an-
giogenesis and inflammation [44]. Unsurpirsingly,
large protein differences were also observable by
eye in the Amide I and II bands (Figure 1d). These
changes may be indicative of the complex network
of enzymes such as proteases and sulfatases that are
involved in activation of various signalling pathways
during matrix re-organisation and tumour progres-
sion [45].

Table 1 Urothelial sub-variants and corresponding ex-
tracted spectra.

Sub-variant #Spectra #Sampled
IR images

#Patient
cases used

Conventional TCC 11776 3 2
Micro-papillary 19796 2 1
Stroma 14757 4 3
Lymphocyte-rich
(epithelial)

19671 2 1

Clear cell level 1 12748 4 2
Clear cell level 2 20064 4 2
Lipoid 307 2 1
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Figure 1 (online color at:
www.biophotonics-journal.org) Mi-
cro-papillary regions of TCC.
Images display: (a) H & E photo-
micrographs where the black ar-
rows indicate regions with more
extensive retraction spaces (b) in-
frared total intensity of absorbance
maps of the regions of interest;
dashed lines indicate the areas of
cluster analysis for image A
(440 mm � 440 mm) and image B
(495 mm � 660 mm) (c) correspond-
ing 2-class K-means classification
matrix and (d) mean representa-
tive spectra.
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Histologically, retraction spaces, such as the pro-
minent pattern found in the urothelial micro-papil-
lary variant, are frequently observed and can be dif-
ficult to differentiate from indicative retraction
spaces in lymphovascular invasion [46]. Although
there is no defined correlation, true lymphovascular
invasion, has in fact reported to be present in most
TCC cases presenting with the micro-papillary sub-
variant [47]. More convincingly, the presence of mi-
cro-papillary features or extensive retraction spaces
in breast carcinoma has been shown to predict the
presence of nodal metastasis. It is hypothesised that

the characteristic clear spaces are related to altered
tumour-stromal interactions, which might have an
important role in lymphatic tumour spread and tu-
mour progression [48].

3.1.2 Lymphocyte-rich TCC

Lymphoepithelioma-like carcinoma (LELC) in the
urinary tract is a rare malignancy, named for its re-
semblance to nasopharyngeal undifferentiated carci-

Figure 2 (online color at:
www.biophotonics-journal.org)
Lymphocyte-rich regions of TCC:
Photomicrographs of the H & E
stained tissue after IR acquisition
(left) and the K-means pseudo-col-
our map associated with each in-
frared image (right). Lymphocyte-
rich epithelium is classified (ma-
genta/pink) and stroma (green) for
two regions of patient Sample 2
(a, b). (c) displays TCC with pro-
minent lymphoid stroma (green)
and typical TCC (yellow) from pa-
tient Sample 3.
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noma or lymphoepithelioma. Investigation of immu-
nohistochemical and molecular characteristics of
bladder LELC is limited [49]. LELC typically con-
sists of high-grade tumour cells with a syncytial ap-
pearance, arranged in sheets or anastomosing nests
with a prominent polyclonal lymphoplasmacytic infil-
trate [1, 49]. Histological analysis of the lymphocyte-
rich tissue in this study, however, found urothelial
carcinoma with lymphocyte infiltration rather than
lymphoepithelioma-like carcinoma due to a lack of
syncytial growth pattern in the H & E photomicro-
graphs. The presence of dense, tumour-infiltrating
lymphocytes is said to be a highly significant predic-
tor of favourable prognosis in invasive TCC [50].
Figure 2a and b display captured regions of lympho-
cyte-rich invasion in the epithelium of TCC (co-
loured magenta – major class/coloured pink – minor
class) and stroma (green) by unsupervised cluster
analysis. Figure 2c displays a different example,
where the lymphocytes are restricted to stromal re-
gions around otherwise conventional TCC. In both

cases the lymphocyte-rich epithelial tissue spectra
displayed pronounced symmetric vs(1080 cm�1) and
asymmetric vas(1240 cm�1) phosphodiester stretches
(Figure 3), notable spectral features reported in
FTIR studies of lymphocyte cells [51, 52]. There
were observable differences between the two lym-
phocyte classes (Figure 3). The majority spectra dis-
played a more pronounced shoulder in the carbohy-
drate region associated with glycogen at ~1030 cm�1.
It is possible that an increased rate of glycogen con-
sumption in the minor class may be indicative of
greater metabolic activity [53]. The minority class of
spectra (pink) exhibit larger variance, particularly in
the lipid regions at higher wavenumbers. This var-
iance was reflected in PCA space when 300 ran-
domly selected 2nd derivative spectra per class were
PC analysed; the minority data points projecting
more extensively in PC1 (Figure 3). Loadings for
PC1 can be found in Supp. Note 5 where differences
are noted for the symmetric and anti-symmetric
stretching of CH2, protein differences in the amide I

Figure 3 (online color at:
www.biophotonics-journal.org)
Mean representative spectra �
standard deviation (black lines) for
the two classes of lymphocyte-asso-
ciated tissue spectra; majority spec-
tra (magenta) and minority (pink)
in the K-means pseduo-colour
maps in Figure 2a, b (top). PCA
score plot of major and minor data
points from 300 randomly selected
second derivative spectra per class
(below).
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and II bands and the C––O stretch associated with
glycogen. It is hypothesized that the spectral differ-
ences within the minority tissue are possibly due to
the disruption of the surrounding matrix, similar to
the observations in the micro-papillary variant, as
larger matrix-associated spacing is observed in the
minority spectral regions in the H & E.

3.1.3 Clear cell sub-variant

Clear cell change can be seen in some TCCs,
although it is uncommon. Histological findings con-
sist of tumour cells with abundant clear cytoplasm
occurring in the bladder or upper urinary tract. An
alternative situation where clear cells feature, is in
clear cell adenocarcinoma of the urinary tract [54].
This is somewhat different from TCC with clear cell
change and different again from clear cell renal car-
cinoma. The clear cell variant of TCC has high levels
of cytoplasmic glycogen, resulting in clear appear-
ance. Its distinction from clear cell adenocarcinoma
is usually without difficulty. The clear cell sub-var-

iant is, however, difficult to identify in poorly differ-
entiated carcinoma of the upper tract (renal pelvis/
upper ureter) and to distinguish from high grade
clear cell renal cell carcinoma [55, 56]. An objective
approach for distinguishing the two histological var-
iants would be particularly useful.

The H & E photomicrographs (Figure 4) show re-
gions of TCC with mostly conventional appearance,
however at higher magnifications, sub-regions were
found to be potentially indicative of clear cell change
(Supp. Note 6). Morphological changes in the H & E,
however, were relatively subtle compared to the dra-
matic changes in the infrared signatures extracted
from the unsupervised classification. Figure 5 dis-
plays the mean spectrum of extracted classes from
the k-means classification matrix of (Figure 4c)
where typical cells, stroma, presumable ‘clear cell
change’ and extensive clear cell chemistry are classi-
fied as brown (dark yellow), green, blue and red re-
spectively. A second example from this Patient Sam-
ple 5 (Figure 4c) can be found in Supp. Note 7. The
blue class has been assigned as an emerging clear
cell class as the mean spectrum displays somewhat
transitional biochemistry between the conventional

Figure 4 (online color at:
www.biophotonics-journal.org)
Photomicrographs of the H & E
stained tissue after IR acquisition
(left), the pseudo-colour k-means
classification matrix (middle) and
photomicrographs of serial sec-
tions stained for PAS (where the
intensity of the pink staining is
proportional to the proportion of
glycogen) for each infrared image
(right). Two regions shown are
from Sample 5 (a, b) and one from
Sample 6 (c). Clear cell are classi-
fied by blue and red; with red hav-
ing the most developed glycogen
signal in the spectra. Areas of con-
ventional transitional cells and
stroma are classified yellow and
green respectively.
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urothelial cell and the clear cell sub-variant; a sub-
stantial increase in lipids yet with an increasing
shoulder at ~ 1030 cm�1, suggestive of glycogen ac-
cumulation. The serial sections were stained with
PAS for glycogen presence, where deeper staining is
synonymous with greater relative abundance. This
gave confirmatory evidence of the clear cell pheno-
type and the associated high infrared signal of glyco-
gen at ~ 1030 cm�1

3.1.4 Lipoid sub-variant

Lipoid cells are large carcinoma cells with optically
clear empty multi-vacuolated cells resembling lipo-
blasts. They are recognised by the WHO classifica-
tion as relatively rare TCCs: very few cases have
been reported [30, 57]. They may mimic a clear-cell
appearance, but differ due to the multi-vacuolated
appearance and negative PAS staining (Figure 6)
[58]. The presence of lipid has not convincingly been
proven by histochemistry, leaving the chemical con-
tents a mystery; hence the term ‘lipoid’ variant. TCC
with lipoid features is an important variant, as it can
pose diagnostic difficulties, especially in limited
biopsy samples in which it may be mistaken for a
sarcomatoid carcinoma or secondary tumour. The
TCC involved is usually high grade and invasive,
however there is no known prognostic significance
of this histological variant of bladder cancer. The ex-
ample found in Patient Sample 6 presented with in-
filtrative growth and frank necrosis (Supp. Table 2).

Figure 5 (online color at: www.biophotonics-journal.org)
Mean representative spectrum for the classes of k-means
image (Fig. 4c) illustrating a dramatic increase in carbohy-
drates in the clear cell region (red class). It is presumed
that an intermediate signature, indicating progression to
clear cell development is also detected (blue class). Con-
ventional TCC and stroma-classed spectra are coloured
brown (dark yellow) and green respectively.

Figure 6 (online color at:
www.biophotonics-journal.org)
H & E (left) displaying a multi-dif-
ferentiated TCC tumour with a
smaller degree of clear cell regions
(red arrow) and lipoid cell variants
(black arrow). In a serial section,
the glycogen-rich clear cells stain
positively for PAS whereas the li-
poid cells are PAS negative (right).
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Spectra were extracted from these lipoid cells by
using a total intensity of absorbance threshold due
to the cells’ uniquely low overall intensity (Figure 7)
across two IR images. The lipoid spectra were found
to be protein and carbohydrate-rich, although gener-
ally less abundant in lipids than the clear cell var-
iant.

3.2 Collective spectral analysis

Mean spectra of each identified class are shown in
Figure 8. The most distinctive signatures are unsur-

prisingly from the clear cell sub-variant, which is
known to have high levels of glycogen and lipids.
The lipoid cells also have a similar spectral profile.
Mean 2nd derivative equivalent spectra were com-
pared for each class (Figure 9). The clear cell deriva-
tives have the strongest CH2 signals whereas the li-
poid cells dominate at the protein amide I band
(Figure 9b). The clear cell and lipoid spectra display
pronounced carbohydrate peaks at 1030, 1080 and
1150 cm�1 assigned to carbohydrate signatures (a
wavenumber shift is observed for the clear cell deri-
vative at 1026 cm�1) (Figure 9c). The lipoid cells are
also distinguishable at the anti-symmetric phospho-
diester stretch at 1240 cm�1

Figure 7 (online color at:
www.biophotonics-journal.org) To
assess the chemistry within the li-
poid cells, a low-intensity of absor-
bance threshold was applied (left),
in conjunction with the corre-
sponding H & E (right), to obtain
an accurate lipoid co-ordinate bin-
ary mask. The mask was then used
to extract the lipoid-associated
spectra (black class).

Figure 8 (online color at:
www.biophotonics-journal.org)
Spectra from Table 1 were com-
bined and vector-normalised as a
total dataset, then averaged to re-
present the mean class spectrum.
(Displayed spectra are artificially
super-imposed for clarity).
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3.2.1 Principal component analysis

A balanced sample set of 175 randomly chosen 2nd

derivative spectra was selected per class for principal
component analysis (Figure 10a, b) (Lipoid spectra
were omitted due to low spectral observations).
Each class displayed coherent clustering in PC space,
with the exception of the micro-papillary variant
(Figure 10a). This is most likely due to its highly ag-
gressive phenotype that leads to disruption and re-

placement of the normal stromal matrix and so
causes more transitional chemical variation (exten-
sive stromal disruption found in the H & E images
are highlighted by the black arrows in Figure 1a).

For clarity, PCA was repeated with the removal of
the micro-papillary variant (Figure 10b). The PCA
process was repeated several times to ensure that
randomly extracted spectra gave an accurate repre-
sentation of the full spectral population (Supp
Note 8). PCA is an unsupervised chemometric techni-

Figure 9 (online color at:
www.biophotonics-journal.org)
Mean representative 2nd derivative
spectra per class (a) for 2800–
3000 cm�1 (b) 1500–1750 cm�1 and
1000–1300 cm�1 (c) respectively.
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que with no a priori knowledge of class assignment;
therefore it was encouraging to observe fairly coher-
ent data group clusters, despite the fact that many
classes were made up from spectra of different pa-
tient samples. This gave confidence that chemometric
separation of class types were not simply due to a se-
paration based on individual patient signatures due
to the low sample numbers. The sub-variant clusters
projected in opposite directions from the centroid of
conventional TCC and stroma spectra; suggestive of
a common shared biochemical origin with an even-
tual differentiation into independent classes.

The chemical differences between the lipoid and
clear cell classes were explored by PCA with 100
spectra per class. Interestingly, the clear cell and li-
poid cell spectra, which displayed similar spectral
profiles, were anti-correlated in PC1, in respect to
the conventional TCC. The loading plot for PC1 is
shown in Figure 10. Key regions most influential in
the class differentiation between the lipoid and clear
cell predominantly stem from protein, lipid and car-
bohydrate contributions; namely vibrations from the
anti-parallel b-sheet (13) and (C¼O) stretching vi-
bration of the amide I (15); stretching C––H and
CH2 (7–11); C––O stretching mode of the carbohy-
drates (22), symmetric stretching of the phosphodie-
ster groups (23) and C––O stretching associated with
glycogen (25). Full contributing wavenumber assign-
ments (1–25) in the loadings for PC1 can be found
in Supplementary Table 3.

3.2.2 Support Vector Machine (SVM)
Classification

The extracted spectra of the highlighted subvariant
tissue structures of TCC were compiled from a small
number of cases. To illustrate the potential for future
classification, the example database was evaluated
for its predictive capabilites using a 50,000-strong
spectral dataset.

An SVM with RBF kernel was trained with 3-fold
cross-validation using a 25,000 spectal training set,
comprised of 5,000 randomly selected spectra per
class. The OVR approach was adopted whereby the
decision boundary separates between class ‘k’ versus
the rest of the classes. The test set comprised of an
equal number of respective class spectra (5,000). Fig-
ure 11 displays the binary confusion matrix summary
where spectra have been classed as 1 (positive for the
‘k’th class) or 0 for negative (the rest of classes). The
resulting classification accuracy for classes 1–5 was
99.444 (conventional TCC), 98.496 (stroma), 99.972
(micro-papillary), 99.424 (lymphocyte rich) and
99.096% (clear cell) respectively, giving a total accu-
racy from the SVM of 98.36%. The absolute decision

Figure 10 (online color at: www.biophotonics-journal.org)
PCA score plot of 5 (a) and 4 (b) of the classed tissue
types. PCA of clear cell versus the lipoid cell spectra
against the conventional TCC (c). Loading plot of PC1 for
the corresponding lipoid/clear cell/conventional TCC data
PCA score plot (d). Notable spectral features (1–25) are
tabulated in Supp. Table 3.
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boundary values for each OVR classification are also
shown in Figure 11. These values represent the dis-
tance from the separating hyperplane that was deter-
mined during training. The absolute decision values
can be interpreted as a measure of confidence of the
predicted classification; the larger the value, the more
confident the classifier is in the decision [59]. Despite
the chemical similarity indicated in the PCA score
plot (Figure 10a), the classification performance of
‘stroma versus rest’ (class 2) and ‘micro-papillary
verus rest’ (class 3) with the SVM was excellent.

4. Conclusion

Spectral pathology is an emerging field that has
shown its diagnostic capability by providing biochem-
ical qualification of clinical findings [60]. The techni-
que may be particularly useful for TCC of the bladder
to avoid diagnostic errors. This is because a variety of
unusual architectural patterns of TCC can be mista-
ken for reactive processes or benign tumours, whilst
others can mimic metastatic tumour from other sites
[1]. There are also cases of poorly differentiated carci-
nomas with ambiguous morphology.

The application of spectral pathology via infrared
microspectroscopy has demonstrated that tumour
heterogeneity may be easily recognised and differen-
tiated by chemical composition alone, with the use
of staining required only as a validatory measure.
Despite the low patient cases, this unique study has
led to the spectral profiling of several tissue struc-
tures associated with TCC and its sub-variants. The
clear cell variant, for example, can occur in several
tissues and is generally known for its ability to accu-
mulate high levels of glycogen [61–64]. This was re-
flected in its spectral phenotype with an atypically
high absorbance in the infrared, a feature rarely ob-
served in other tissue spectra.

The next step, beyond confirming the ability to
identify and classify spectral signatures of the sub-
variants studied with greater patient cases, would be
to see whether clear cell bladder carcinoma can be
differentiated by its spectroscopic signal from high-
grade renal clear cell carcinoma of the upper tract.
A similar aim would also be to discriminate between
the micro-papillary phenotype that is morphologi-
cally identical in cancers from several organs [42]. If
achievable, it would leave no question that spectral
pathology could potentially have a critical role in the
clinical diagnosis of rare and challenging cases.

The ability to localise spectral signals from cells
using imaging capabilities has also led to an initial
profiling of chemical constituents within the rare li-
poid sub-variant cells. It is not clear whether the
poor prognosis is due to the lipoid cells or merely a
reflection of the association of this histology with
high stage TCC [30]. The cells have revealed a pro-
tein and carbohydrate-rich spectral phenotype,
rather than a lipid rich-composite; a significant find-
ing that may help to unravel the mystery of the so-
called lipoid cells [31, 58].
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