18 research outputs found

    Investigating the physical properties of transiting hot Jupiters with the 1.5-m Kuiper Telescope

    Full text link
    We present new photometric data of 11 hot Jupiter transiting exoplanets (CoRoT-12b, HAT-P-5b, HAT-P-12b, HAT-P-33b, HAT-P-37b, WASP-2b, WASP-24b, WASP-60b, WASP-80b, WASP-103b, XO-3b) in order to update their planetary parameters and to constrain information about their atmospheres. These observations of CoRoT-12b, HAT-P-37b and WASP-60b are the first follow-up data since their discovery. Additionally, the first near-UV transits of WASP-80b and WASP-103b are presented. We compare the results of our analysis with previous work to search for transit timing variations (TTVs) and a wavelength dependence in the transit depth. TTVs may be evidence of a third body in the system and variations in planetary radius with wavelength can help constrain the properties of the exoplanet's atmosphere. For WASP-103b and XO-3b, we find a possible variation in the transit depths that may be evidence of scattering in their atmospheres. The B-band transit depth of HAT-P-37b is found to be smaller than its near-IR transit depth and such a variation may indicate TiO/VO absorption. These variations are detected from 2-4.6σ\sigma, so follow-up observations are needed to confirm these results. Additionally, a flat spectrum across optical wavelengths is found for 5 of the planets (HAT-P-5b, HAT-P-12b, WASP-2b, WASP-24b, WASP-80b), suggestive that clouds may be present in their atmospheres. We calculate a refined orbital period and ephemeris for all the targets, which will help with future observations. No TTVs are seen in our analysis with the exception of WASP-80b and follow-up observations are needed to confirm this possible detection.Comment: 18 pages, 7 figures, 9 Tables. Light Curves available online. Accepted to MNRAS (2017 August 25

    Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

    Get PDF
    Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs “pro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness

    Experimental game theory and its application in sociology and political science

    Get PDF
    This is an open access special issue distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The aim of this special issue is to encourage original research that seeks to study sociological or political phenomena using laboratory experiments that are based on game-theoretical benchmarks and, vice versa, that seeks mathematical modeling of game theoretical arguments to inspire experiments in the fields of Sociology and Political Science. We received 14 papers from authors in varies countries all over the world, of which 5 high-quality papers emerged for publication in the special issue after a strict review process. In the first research article of the special issue, G. Bravo, F. Squazzoni, and K. Takács experimentally study whether intermediaries can positively influence cooperation between a trustor and a trustee in an investment or trust game. The second article by L. A. Palacio, A. Cortés-Aguilar, and M. Muñoz-Herrera develops a game theoretical foundation for experimental investigations of the strategic role in games with nonbinding communication. In the third article, L. Corazzini and M. Tyszler employ quantal response equilibrium (QRE) to find out the extent of confusion and efficiency motives of laboratory participants in their decisions to contribute to a public good. The fourth article by S. A. Tulman utilizes QRE (i.e., noisy decision-making) and altruism-motivated players to investigate the “paradox of voter turnout” in a participation game experiment. Finally, in the fifth article B. Kittel, F. Paetzel, and S. Traub present a laboratory study in which they examine the role of the middle class on income distribution within the framework of a contest game.-- Experimental Game Theory and Its Application in Sociology and Political Science, Arthur Schram, Vincent Buskens, Klarita Gërxhani, and Jens Großer - Editorial (2 pages), Article ID 280789 -- The Strategic Role of Nonbinding Communication, Luis A. Palacio, Alexandra Cortés-Aguilar, and Manuel Muñoz-Herrera (11 pages), Article ID 910614 -- Intermediaries in Trust: Indirect Reciprocity, Incentives, and Norms, Giangiacomo Bravo, Flaminio Squazzoni, and Károly Takács (12 pages), Article ID 234528 -- Altruism, Noise, and the Paradox of Voter Turnout: An Experimental Study, Sarah A. Tulman (22 pages), Article ID 972753 -- Preference for Efficiency or Confusion? A Note on a Boundedly Rational Equilibrium Approach to Individual Contributions in a Public Good Game, Luca Corazzini and Marcelo Tyszler (8 pages), Article ID 961930 -- Competition, Income Distribution, and the Middle Class: An Experimental Study, Bernhard Kittel, Fabian Paetzel, and Stefan Traub (15 pages), Article ID 30391

    Evaluation of a high resolution genotyping method for Chlamydia trachomatis using routine clinical samples

    Get PDF
    Background: genital chlamydia infection is the most commonly diagnosed sexually transmitted infection in the UK. C. trachomatis genital infections are usually caused by strains which fall into two pathovars: lymphogranuloma venereum (LGV) and the genitourinary genotypes D–K. Although these genotypes can be discriminated by outer membrane protein gene (ompA) sequencing or multi-locus sequence typing (MLST), neither protocol affords the high-resolution genotyping required for local epidemiology and accurate contact-tracing.Principal findings: we evaluated variable number tandem repeat (VNTR) and ompA sequencing (now called multi-locus VNTR analysis and ompA or “MLVA-ompA”) to study local epidemiology in Southampton over a period of six months. One hundred and fifty seven endocervical swabs that tested positive for C. trachomatis from both the Southampton genitourinary medicine (GUM) clinic and local GP surgeries were tested by COBAS Taqman 48 (Roche) PCR for the presence of C. trachomatis. Samples tested as positive by the commercial NAATs test were genotyped, where possible, by a MLVA-ompA sequencing technique. Attempts were made to isolate C. trachomatis from all 157 samples in cell culture, and 68 (43%) were successfully recovered by repeatable passage in culture. Of the 157 samples, 93 (i.e. 59%) were fully genotyped by MLVA-ompA. Only one mixed infection (E &amp; D) in a single sample was confirmed. There were two distinct D genotypes for the ompA gene. Most frequent ompA genotypes were D, E and F, comprising 20%, 41% and 16% of the type-able samples respectively. Within all genotypes we detected numerous MLVA sub-types.Conclusions: amongst the common genotypes, there are a significant number of defined MLVA sub-types, which may reflect particular background demographics including age group, geography, high-risk sexual behavior, and sexual networks<br/

    Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits

    No full text
    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here, we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multiwavelength photometry indicates a constant transit depth from near-UV to optical wavelengths in 10 targets (suggestive of clouds), and a varying transit depth with wavelength in 5 targets (hinting at Rayleigh or aerosol scattering in their atmospheres). We also present the first detection of a smaller near-UV transit depth than that measured in the optical in WASP-1b and a possible opacity source that can cause such radius variations is currently unknown. WASP-36b also exhibits a smaller near-UV transit depth at 2.6 sigma. Further observations are encouraged to confirm the transit depth variations seen in this study.NASA's Planetary Atmospheres programme; Virginia Space Grant Consortium Graduate Research Fellowship Program; National Science Foundation [DGE-1315231]; University of Arizona Astronomy Club; Steward Observatory TAC; Lunar and Planetary LaboratoryThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore