21 research outputs found

    Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali

    Get PDF
    BACKGROUND: Anopheles gambiae sensu stricto (s.s.) is a primary vector of Plasmodium falciparum in sub-Saharan Africa. Although some physiological differences among molecular and chromosomal forms of this species have been demonstrated, the relative susceptibility to malaria parasite infection among them has not been unequivocally shown. The objective of this study was to investigate P. falciparum circumsporozoite protein infection (CSP) positivity among An. gambiae s.s. chromosomal and molecular forms. METHODS: Wild An. gambiae from two sites Kela (n = 464) and Sidarebougou (n = 266) in Mali were screened for the presence of P. falciparum CSP using an enzyme-linked immunosorbent assay (ELISA). Samples were then identified to molecular form using multiple PCR diagnostics (n = 713) and chromosomal form using chromosomal karyotyping (n = 419). RESULTS: Of 730 An. gambiae sensu lato (s.l.) mosquitoes, 89 (12.2%) were CSP ELISA positive. The percentage of positive mosquitoes varied by site: 52 (11.2%) in Kela and 37 (13.9%) in Sidarebougou. Eighty-seven of the positive mosquitoes were identified to molecular form and they consisted of nine Anopheles arabiensis (21.4%), 46 S (10.9%), 31 M (12.8%), and one MS hybrid (14.3%). Sixty of the positive mosquitoes were identified to chromosomal form and they consisted of five An. arabiensis (20.0%), 21 Savanna (15.1%), 21 Mopti (30.4%), 11 Bamako (9.2%), and two hybrids (20.0%). DISCUSSION: In this collection, the prevalence of P. falciparum infection in the M form was equivalent to infection in the S form (no molecular form differential infection). There was a significant differential infection by chromosomal form such that, P. falciparum infection was more prevalent in the Mopti chromosomal forms than in the Bamako or Savanna forms; the Mopti form was also the most underrepresented in the collection. Continued research on the differential P. falciparum infection of An. gambiae s.s. chromosomal and molecular forms may suggest that Plasmodium – An. gambiae interactions play a role in malaria transmission

    A new multiplex SNP genotyping assay for detecting hybridization and introgression between the M and S molecular forms of Anopheles gambiae

    No full text
    The M and S forms of Anopheles gambiae have been the subject of intense study, but are morphologically indistinguishable and can only be identified using molecular techniques. PCR-based assays to distinguish the two forms have been designed and applied widely. However, the application of these assays towards identifying hybrids between the two forms, and backcrossed hybrids in particular, has been problematic as the currently available diagnostic assays are based on single locus and/or are located within a multicopy gene. Here, we present an alternative genotyping method for detecting hybridization and introgression between M and S molecular forms based on a multilocus panel of single-nucleotide polymorphisms (SNPs) fixed between the M and S forms. The panel of SNPs employed is located in so-called islands of divergence leading us to describe this method as the 'Divergence Island SNP' (DIS) assay. We show this multilocus SNP genotyping approach can robustly and accurately detect F1 hybrids as well as backcrossed individuals

    Data from: A new multiplex SNP genotyping assay for detecting hybridization and introgression between the M and S molecular forms of Anopheles gambiae

    No full text
    The M and S forms of A. gambiae have been the subject of intense study, but are morphologically indistinguishable and can only be identified using molecular techniques. PCR-based assays to distinguish the two forms have been designed and applied widely. However, the application of these assays towards identifying hybrids between the two forms, and backcrossed hybrids in particular, has been problematic as the currently available diagnostic assays are based on single loci, and/or are located within a multi-copy gene. Here we present an alternative genotyping method for detecting hybridization and introgression between M and S molecular forms based on a multi-locus panel of single nucleotide polymorphisms (SNPs) fixed between the M and S forms. The panel of SNPs employed are located in so called “islands of divergence” leading us to describe this method as the “Divergence Island SNP” (DIS) assay. We show this multi-locus SNP genotyping approach can robustly and accurately detect F1 hybrids as well as backcrossed individuals

    A DNA extraction protocol for improved DNA yield from individual mosquitoes [version 1; referees: 2 approved]

    No full text
    Typical DNA extraction protocols from commercially available kits provide an adequate amount of DNA from a single individual mosquito sufficient for PCR-based assays. However, next-generation sequencing applications and high-throughput SNP genotyping assays exposed the limitation of DNA quantity one usually gets from a single individual mosquito. Whole genome amplification could alleviate the issue but it also creates bias in genome representation. While trying to find alternative DNA extraction protocols for improved DNA yield, we found that a combination of the tissue lysis protocol from Life Technologies and the DNA extraction protocol from Qiagen yielded a higher DNA amount than the protocol using the Qiagen or Life Technologies kit only. We have not rigorously tested all the possible combinations of extraction protocols; we also only tested this on mosquito samples. Therefore, our finding should be noted as a suggestion for improving people’s own DNA extraction protocols and not as an advertisement of a commercially available product

    A multi-detection assay for malaria transmitting mosquitoes.

    No full text
    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays

    A Multi-detection Assay for Malaria Transmitting Mosquitoes

    No full text
    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays

    DIS genotype data

    No full text
    Divergence Island SNP genotype data for each individual isolates from four sites (Kondi, Foumbot, Tiko and Abu)

    Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California.

    No full text
    The invasion and subsequent establishment in California of Aedes aegypti in 2013 has created new challenges for local mosquito abatement and vector control districts. Studies were undertaken to identify effective and economical strategies to monitor the abundance and spread of this mosquito species as well as for its control. Overall, BG Sentinel (BGS) traps were found to be the most sensitive trap type to measure abundance and spread into new locations. Autocidal-Gravid-Ovitraps (AGO-B), when placed at a site for a week, performed equally to BGS in detecting the presence of female Ae. aegypti. Considering operational cost and our findings, we recommend use of BGS traps for surveillance in response to service requests especially in locations outside the known infestation area. We recommend AGO-Bs be placed at fixed sites, cleared and processed once a week to monitor mosquito abundance within a known infestation area. Long-term high density placements of AGO-Bs were found to show promise as an environmentally friendly trap-kill control strategy. California Ae. aegypti were found to be homozygous for the V1016I mutation in the voltage gated sodium channel gene, which is implicated to be involved in insecticide resistance. This strain originating from Clovis, California was resistant to some pyrethroids but not to deltamethrin in bottle bio-assays. Sentinel cage ultra-low-volume (ULV) trials using a new formulation of deltamethrin (DeltaGard®) demonstrated that it provided some control (average of 56% death in sentinel cages in a 91.4 m spray swath) after a single truck mounted aerial ULV application in residential areas
    corecore