30 research outputs found

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Clustering of Silver Nanoclusters Embedded in Soda Lime Glasses Using Ionic Exchange and Helium Ion Bombardment

    No full text
    Silver nanocluster precipitation in AR Schott glass by subsequently silver ionic exchange and helium bombardment was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible optical absorption. Helium ion bombardment was used to induce local defects in the matrix and to promote the growth of the silver nano-aggregates. The typical implantation depth was estimated at 1 mu m by Trim simulation. SEM investigations give us the concentration profile of the exchanged samples and the maximum depth. Optical absorption was performed to visualize the effect of the He(+) fluence on the ion exchanged sample spectra and compared to the Drude model varying size and matrix refractive index. TEM was used to evaluate the distribution size of the silver nanoparticles, their structure by diffraction pattern, size, and shape and to correlate it to the experimental and theoretical absorption curves. The TEM observations prove that we are in a confinement regime with a particle size below the mean free path of the silver bulk metal

    Lichen as biomonitor of atmospheric elemental composition from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica

    Get PDF
    Lichens are powerful biomonitor of airborne pollution around point sources or long range transport because they are perennial allowing bioindication at long period. The element concentrations in foliose and fruticose lichen species from Potter Peninsula located in 25 de Mayo (King George) Island is reported. The coefficient of the variation for most of the elements was up to 50% except for as and Br, K and Se. The Principal Component Analysis showed differences among sampling sites according to human activities respect to the special protected areas. Aluminium, Cr, Hg, Pb and Se concentrations are linked local waste burning, global inputs, and the melt-water processes, while Br and Se were associated with marine biogenic cycle. This information could be a valuable tool for future atmospheric studies.</p
    corecore