13 research outputs found

    Molecular mechanisms modulating chondrogenesis

    Get PDF

    Control de la adhesion celular y bacteriana en los dispositivos biomédicos implantables

    Get PDF
    28 páginasLas estrategias actuales para limitar la adhesión celular y/o bacteriana se han centrado en el control de las propiedades físico-químicas del polímero y el control de la topografía de la superficie del implante. Nuestra hipótesis se centra en que el control de las propiedades de los materiales en la superficie en conjunto con una topografía óptima proporcione un enfoque que nos permita gobernar las interacciones material/célula/superficie para suprimir la adhesión celular. En nuestro estudio, el control de la adhesión celular se examinó utilizando microestructuras en forma de podio (60x60μm tamaño y una altura de 2 μm) y en forma de nido de abeja ( 2μm, 5μm altura y ancho variable entre 2 μm a 10μm) impresos en diferentes poli (etilenglicol) (PEG) usando la técnica de polimerización de dos fotones.PregradoIngeniero(a) Biomédico(a

    Bovine Colostrum Supplementation and Bone Health: a Pilot Study

    Get PDF
    Research has shown the positive effects of some bovine colostrum components in bone cells; for instance, lactoferrin is reported to stimulate osteoblast proliferation and inhibit osteoclast activity in cell cultures. However, whether bovine colostrum as a whole can induce bone mass gains in osteoporotic bones is relatively unclear. The aim of this study was to investigate the effects of bovine colostrum supplementation in ovariectomized-induced bone loss (OVX) rats. Methods: Twenty-seven-month-old female Wister rats (n=16) were randomly assigned to the following two groups: 1) a healthy control (non-OVX) with no supplementation, and 2) a OVX with bovine colostrum supplementation (0.5g/day; oral consumption). After 5 months supplementation, bone microstructure was scanned using micro-CT (right tibia). Bone formation markers (serum: pre-and post supplementation) were analysed (alkaline phosphatase and osteocalcin) by ECLIA. The study was approved by the National Ethics Committee for the Use of Animals in Research (ORBEA). Results: No significant differences were found between groups in serum alkaline phosphatase either before or after supplementation (p>0.05). Serum osteocalcin significantly increased post-supple-mentation in the OVX compared to pre-supplementation (pre: 11.32+/-1.61; post: 12.45+/-1.21μg/L, p0.05). Trabecular bone mineral content (BMC), trabecular thickness, cortical bone mineral density (BMD) and cortical BMC were similar between groups after supplementation (p>0.05). However, OVX group revealed significantly higher trabecular porosity (5.6%, p<0.01), trabecular separation (36.3%, p<0.01), and cortical porosity (8.0%, p<0.01) compared to the healthy control post-supplementation. Conclusion: Bovine colostrum seems to preserve bone mass of OVX by stimulating bone formation. However, these positive effects seem not to be sufficient to restore bone micro-architecture in the OVX group, possibly because the administrated dose of bovine colostrum was not sufficient for OVX to catch-up healthy rats in terms of trabecular and cortical porosity. The potential therapeutic use of bovine colostrum for osteoporosis deserves further investigation

    Defining the baseline transcriptional fingerprint of rabbit hamstring autograft

    Get PDF
    Anterior cruciate ligament (ACL) injuries are common and of high relevance given their significant effects on patient function, quality of life, and posttraumatic arthritis. To date, investigators have reported on the expression of genes classically associated with tendon and ligament reconstruction, including decorin (DCN) and collagen type 1 (COL1A1 and COL1A2). However, the transcriptional fingerprint for hamstring tendons, one of the most common autografts used for ACLR, remains to be determined. The purpose of this study was to characterize the baseline transcriptional state of semitendinosus autografts in a rabbit model for ACLR and to employ such characterization to guide scientifically-driven target gene selection for future analyses. Next generation RNA sequencing was performed on whole semitendinosus autografts from four New Zealand White rabbits (mean age: 193 ± 0 days, mean weight: 2.78 kg ± 0.15 kg) and subsequently analyzed using gene enrichment and protein-protein interaction network analysis. Decorin, Secreted Protein Acidic and Cysteine Rich (SPARC), Collagen type 1, and Proline and Arginine Rich End Leucine Rich Repeat Protein (PRELP) and were determined to be the highest expressed genes with tendon-associated ontology. These results strengthen the association between genes such as DCN, COL1A1, and COL1A2 and tendon tissues as well as provide the novel addition of further high-expression, tendon characteristic genes such as SPARC and PRELP to provide guidance as to which molecules serve as high-signal candidates for future ACL research. In addition, this paper provides open-access to the expression fingerprint of hamstring autograft for ACLR in New Zealand White rabbits, thus providing a readily-accessible collaborative reference, in alignment with ethical animal research principles

    Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

    Get PDF
    Background: Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). Methods: In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. Results: We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Conclusions: Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria

    Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affectcartilage development

    Get PDF
    Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the roleof Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre,Osx1-Cre, and Col2a1-Cre drivers, respectively. Wild-type and conditional knockout mice were phenotypically assessed by grossmorphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated usingRNA-sequencing, histologic evaluation, and western blotting. Aged mice with Ezh2 deficiency were also evaluated for prematuredevelopment of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age, although caused no other gross developmentaleffects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3lysine 27 (H3K27me3) and altered differentiation in vitro. RNA-seq analysis revealed enrichment of an osteogenic gene expressionprofile in Ezh2 deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes withoutinducing excessive hypertrophy or premature osteoarthritis in vivo. In summary, loss of Ezh2 reduced H3K27me3 levels, increased expression of osteogenic genes in chondrocytes, and resulted ina transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondralossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage-commitment

    Autophagy is involved in mesenchymal stem cell death in coculture with chondrocytes

    Get PDF
    Objective: Cartilage formation is stimulated in mixtures of chondrocytes and human adipose–derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue–derived MSC cell death occurs in the presence of chondrocytes. Methods: Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. Results: RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. Conclusion: In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation

    Molecular characterization of physis tissue by RNA sequencing

    Get PDF
    The physis is a well-established and anatomically distinct cartilaginous structure that is crucial for normal long-bone development and growth. Abnormalities in physis function are linked to growth plate disorders and other pediatric musculoskeletal diseases. Understanding the molecular pathways operative in the physis may permit development of regenerative therapies to complement surgically-based procedures that are the current standard of care for growth plate disorders. Here, we performed next generation RNA sequencing on mRNA isolated from human physis and other skeletal tissues (e.g., articular cartilage and bone; n = 7 for each tissue). We observed statistically significant enrichment of gene sets in the physis when compared to the other musculoskeletal tissues. Further analysis of these upregulated genes identified physis-specific networks of extracellular matrix proteins including collagens (COL2A1, COL6A1, COL9A1, COL14A1, COL16A1) and matrilins (MATN1, MATN2, MATN3), and signaling proteins in the WNT pathway (WNT10B, FZD1, FZD10, DKK2) or the FGF pathway (FGF10, FGFR4). Our results provide further insight into the gene expression networks that contribute to the physis’ unique structural composition and regulatory signaling networks. Physis-specific expression profiles may guide ongoing initiatives in tissue engineering and cell-based therapies for treatment of growth plate disorders and growth modulation therapies. Furthermore, our findings provide new leads for therapeutic drug discovery that would permit future intervention through pharmacological rather than surgical strategies

    Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2

    Get PDF
    Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 μm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 μg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from μCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass

    Fresh Osteochondral Allograft Transplantation in the Knee: A Viability and Histologic Analysis for Optimizing Graft Viability and Expanding Existing Standard Processed Graft Resources Using a Living Donor Cartilage Program

    Get PDF
    Objective: This study aims to (1) determine and validate living cartilage allograft transplantation as a novel source for viable osteochondral allograft (OCA) tissues and (2) perform histologic and viability comparisons of living donor cartilage tissues to currently available clinical-grade standard processed grafts. Design: Using healthy cartilage from well-preserved contralateral compartments in 27 patients undergoing total knee arthroplasty (TKA) and 10 clinical-grade OCA specimens obtained immediately following operative implantation, standard and living donor OCA quality was evaluated at the time of harvest and following up to 3 weeks of storage on the basis of macroscopic International Cartilage Repair Society grade, histology, and viability. Results: Osteochondral samples demonstrated a consistent decrease in viability and histologic quality over the first 3 weeks of storage at 37°C, supporting the utility of an OCA paradigm shift toward early implantation, as was the clinical standard up until recent adoption of transplantation at 14 to 35 days following donor procurement. Samples from the 10 clinical-grade OCAs, implanted at an average of 23 days following graft harvest demonstrated a mean viable cell density of 45.6% at implantation, significantly lower (P < 0.01) than the 93.6% viability observed in living donor allograft tissues. Conclusions: Osteochondral tissue viability and histologic quality progressively decreases with ex vivo storage, even when kept at physiologic temperatures. Currently available clinical OCAs are stored for 2 to 5 weeks prior to implantation and demonstrate inferior viability to that of fresh osteochondral tissues that can be made available through the use of a living donor cartilage program
    corecore