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Introduction

There is a range of current treatment modalities for symp­
tomatic and focal cartilage defects.1,2 These include bone 
marrow stimulation techniques like microfracture or auto­
logous chondrocyte implantation (ACI)3 and variations 
thereof.4 Unfortunately, microfracture generates fibrous 
cartilaginous scar tissue and therefore provides nonana­
tomic restoration of articular surface. ACI, and related tech­
niques, have demonstrated superior mid- and long-term 
outcomes as compared with the simpler microfracture pro­
cesses.5 However, culturing of chondrocytes in a 2-dimen­
sional environment to obtain sufficient cells for implantation 
can lead to changes in the chondrocyte phenotype.6,7 
Furthermore, substantial numbers of chondrocytes are 
harvested from an otherwise intact articular area creating 
additional damage in the joint surface.6,8

To reduce the number of chondrocytes (CHs) required for 
cell implantation, a combination of chondrocytes and mesen­
chymal stromal cells (MSCs) has been studied.9 Wu et al.10 
demonstrated a beneficial effect on cartilage formation over 

the respective monocultures. MSCs increased chondrocyte 
proliferation and stimulated deposition of cartilage matrix. 
However, the trophic effect generated by MSCs is followed 
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Abstract
Objective. Cartilage formation is stimulated in mixtures of chondrocytes and human adipose–derived mesenchymal stromal 
cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the 
mechanism by which adipose tissue–derived MSC cell death occurs in the presence of chondrocytes. Methods. Human 
primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture 
or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation 
media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between 
monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, 
and P62. Results. RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with 
monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes 
play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the 
autophagic machinery with no substantial activation of the apoptotic pathway. Conclusion. In cocultures of human MSCs 
with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death 
may contribute to the trophic effects of MSCs on cartilage formation.
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by a counter loop where the chondrocytes signal the MSCs to 
undergo cell death. This mechanism has been confirmed 
using a variety of MSC sources both in vitro and in vivo and 
in a clinical trial in which cartilage defects were implanted 
with a mixture of preoperatively isolated chondrocytes and 
allogenic bone marrow derived–stem cells.11-14

It was postulated that the mechanism behind the death of 
the MSCs is likely related to one of the deliberate “suicide” 
programs present within cells.15 These suicide programs are 
usually induced intrinsically or extrinsically by external 
stimuli such as mechanical stress, oxidative processes, and 
drug treatments. The programmed suicide death has usually 
2 main forms, apoptosis and autophagy.16-18 These 2 path­
ways are intricately interconnected and the upregulation of 
one leads to downregulation of the other.19

Apoptosis is triggered by biochemical events that induce 
characteristic changes in the morphology of the cell (i.e., 
membrane blebbing and nuclear fragmentation). The apop­
totic process can be intrinsically activated by the release of 
cytochrome c from mitochondria or can be activated extrin­
sically by death receptors. Both pathways lead to the activa­
tion of a series of caspases which mediate the cell 
destruction.16

Autophagy, is a catabolic process where the cell degrades 
cytoplasmic components important for survival, thereby 
leading to a so called “self-eating” phenomenon. This orga­
nized degradation and recycle activity uses vesicles, known 
as autophagosomes, which can contain organelles, proteins, 
and other components. These autophagosomes subse­
quently fuse with lysosomes that degrade both the cargo 
and the vesicles.19

In light of these results, we decided to investigate which 
of the 2 molecular mechanisms was involved in the possible 
cell death of MSCs in cocultures. Pellets containing the 
combination of human chondrocytes and human MSCs 
were cultured for 1 week and analyzed for changes in gene 
and protein expression characteristic for the apoptotic or 
autophagy pathways. Our data show a clear prevalence in 
activation of the autophagic pathway. We hypothesize that 
this mechanism could be a self-sacrifice mechanism of the 
MSCs which could contribute to the trophic effect of these 
cells on chondrocytes.

Materials and Methods

Cell Culture and Expansion

Human adipose tissue–derived MSCs were extracted from 
lipoaspirates obtained from consenting 2 male healthy donors 
(A211 and A283) and 1 female donor (A258) (Supplementary 
Table 1) as previously described.20-22 Chondrocytes were 
extracted from healthy looking cartilage of a donor undergo­
ing an amputation. The use of cells for this study were 
approved by the Mayo Clinic Institutional Review Board.22

MSCs were cultured in standard medium (Gilco’s 
advanced modified Eagle medium; MEM) supplemented 
with 1% penicillin-streptomycin, 1% GLUTAmax, 5% 
human platelet lysate PLT max, and 0.2% heparin. 
Chondrocytes were cultured in chondrocytes proliferation 
medium (Gilco’s advance MEM, 10% fetal bovine serum 
[FBS], 1% penicillin-streptomycin, 1% GLUTAmax, 0.2 
mM ascorbic acid 2-phosphate, and 4 mM proline). Both 
cell types were cultured in normal oxygen conditions (21% 
oxygen). MSCs were used at passage 5 and primary chon­
drocytes at passage 4.

Pellet Coculture

Cell pellets were generated by seeding 200,000 cells per 
well in a 96-well plate. Cells were cultured as monocultures 
or as cocultures with a ratio of 80% MSCs/20% chondro­
cytes. Both mono- and cocultures were cultured in chondro­
genic proliferation media (same as above) under hypoxia 
(2% oxygen). Medium was changed every three days. 
Pellets were harvested at day 7 for RNA-seq and immuno­
fluorescence analysis.

RNA Extraction

Total RNA was isolated from the samples using the Direct 
zol RNA kit as instructed by the manufacturer (Zymo 
Research, Irvine, CA). For each condition, 4 to 5 cell pellets 
were pooled to obtain sufficient RNA yield for downstream 
analysis. Nanodrop (Thermo Fisher Scientific, Waltham, 
MA) was used to determine the purity and concentration of 
the RNA extracted.

RNA Sequencing and Analysis

RNA sequencing and bioinformatic analysis was performed 
by the Mayo Clinic RNA sequencing and bioinformatic 
cores as described previously.22-25 RNA libraries were pre­
pared using the TruSeq RNA library preparation kit 
(Illumina, San Diego, CA) following the manufacturer’s 
instructions. The poly-A mRNA of each sample was purified 
from the total RNA using oligo dT magnetic beads. To mul­
tiplex sample loading on the flow cells, specific indexes 
were incorporated at the adaptor ligand using the TruSeq kit. 
The constructs were purified and enriched using 12 cycles of 
PCR. Agilent Bioanalyzer DNA 1000 chip and Qubit fluo­
rometry (Invitrogen, Carlsbad, CA) were used to control the 
quality and the concentration of the samples. Libraries were 
loaded onto flow cells at concentrations of 8 to 10 pM to 
generate cluster densities of 700,000/mm2 following the 
standard protocol for the Illumina cBot and cBot Paired end 
cluster-kit version 3. Flow cells were sequenced as 51 X 2 
paired end reads on an Illumina HiSeq 2000 using TruSeq 
SBS sequencing kit version 3 and HCS v2.0.12 data 
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collection software. Base-calling was performed using 
Illumina’s RTA version 1.17.21.3. The RNA-Seq data were 
analyzed using the standard RNA-Seq workflow by Mayo 
Bioinformatics Core called MAPRSeq v.1.2.1, which 
includes alignment with TopHat 2.0.626 and quantification of 
gene expression using the HTSeq software.27 Normalized 
gene counts were also obtained from MAPRSeq where 
expression values for each gene were normalized to 1 mil­
lion reads and corrected for gene length (Reads Per Kilobase 
pair per Million mapped reads, RPKM). RNA-seq data were 
deposited in the Gene Expression Omnibus of the National 
Center for Biotechnology Information (GSE142831).

Identification of Coculture Regulated Genes

To estimate the relative RNA contribution of the MSCs in 
the cocultures, we used the sex mismatch between the male 
donors (A211 and A283) and the female chondrocyte donor. 
The average level of expression of 7 unique male markers 
in the coculture was 57% of the levels in the respective 
monocultures (Table 1). As expected, the Y-markers were 
not expressed in the female chondrocytes and MSC (A258). 
We used these numbers to calculate the expected value of 
gene expression of a given gene using the following for­
mula for each donor pair and calculated the average of the 3 
donors. Only genes with RPKM values above 0.3 in each of 
the samples were included in the analysis.

RPKM Coculture RPKM AMSC

RPKM hCh

expected mono

mono

= ∗

+ ∗

0 57

0 43

.

.

	
(1)

The expected value is valid under the assumption that gene 
expression in cocultures is the sum of gene expression in 
MSCs and chondrocytes and is not influenced by the inter­
action between both cell types.

The real value was then compared with the expected 
value to determine the fold change (Fc) difference.

Fc
RPKM Coculture

Coculture
real

expected

= 	 (2)

The majority of genes have an Fc of around 1 indicating that 
the observed gene expression is the sum of the expression in 
the MSCs and chondrocytes. Genes with an Fc > 2 cutoff 
were considered upregulated genes. Genes with an Fc < 0.5 
were considered downregulated genes.

Immunofluorescence Staining

Pellets were harvested for immunofluorescent staining as 
previously described.28 Cell-pellets were washed with phos­
phate-buffered saline (PBS) and fixed with 10% formalin for 
15 minutes. Samples were then embedded in cryomatrix 
(Thermo Fisher) and cut into 10-μm sections with a cryo­
tome (Shandon). Sections were permeabilized with 0.5% 
Triton X-100 in PBS for 10 minutes at room temperature 
followed by animal serum treatment (5%, 1 hour, room tem­
perature) to block nonspecific binding. Sections were incu­
bated overnight at 4°C in a humidified chamber with 
antibodies against LC3B (1:500 dilution, MAB85582, R&D 
System) and SQSTM1/p62 (1:200 dilution, ab56416, 
Abcam). Subsequently, slides were washed with 0.1% 
Tween 20 in PBS and incubated with Alexa Fluor-conjugated 
secondary antibodies (Alexa 568 or Alexa 488, Abcam) for 
50 minutes at room temperature in a humidified chamber. 
Nuclei were counterstained with 4,6-diamidino-2-phenylin­
dole (DAPI, Molecular Probes) and images were taken with 
a fluorescence microscope (Nikon Eclipse E400).

Results

Transcriptome Changes in MSCs and 
Chondrocyte Cocultures

The relative contribution of the MSCs in gene expression in 
the cocultures dropped from 80% (based on seeding ratio) 

Table 1. R PKM Values of 7 Individual Male Genes.a

Chr GeneID A211 A211 + ch A283 A283 + ch ch
([A211 + ch]/
A211) * 100

([A283 + ch]/
A283) * 100

chrY RPS4Y1 108.6745 67.97581 92.28269 43.43297 0.337399 62.54994 47.06513
chrY DDX3Y 21.43654 11.931 15.98953 8.763549 0.077968 55.6573 54.80805
chrY PRKY 6.416036 3.24354 4.049743 2.343155 0.056736 50.55364 57.85934
chrY USP9Y 3.647092 1.915803 1.484446 0.86582 0.023051 52.5296 58.32615
chrY KDM5D 3.099356 2.289926 2.886254 1.85711 0.00957 73.88392 64.34326
chrY ZFY 3.287543 1.731643 3.220577 1.739003 0.02219 52.67286 53.99662
chrY EIF1AY 8.868548 4.7055 8.95836 5.544899 0.038423 53.05829 61.89636
  Average 57.27222 56.89927

RPKM = Reads Per Kilobase pair per Million mapped reads.
aThe values of the monoculture are compared with the coculture and an average of the 7 genes was obtained. Based on these data, we assumed that 
57% of the RPKM in the cocultures was derived from the mesenchymal stromal cells and 43% was derived from chondrocytes.
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to 57% after 1 week in coculture (Table 1). This confirms 
the disappearance of MSCs from cocultures and is in agree­
ment with previous observations.9

Cluster analysis of RNAseq data from monocultured 
MSCs, chondrocytes, and cocultures at day 7 shows cluster­
ing of the distinct conditions in their respective groups (Fig. 
1b). There is visible variation present in heatmap patterns 
when comparing the 3 MSC donors, indicative of interdo­
nor variation.29 Moreover, the up- and downregulated genes 
in the hCHs and MSCs in the monoculture differ greatly 
from the coculture suggesting an interaction between the 2 
cells. Based on the similarity in gene expression patterns 
between the 3 cocultures, it is likely that common pathways 
are influenced by the interaction between the MSCs and 
the chondrocytes.

A total of 362 genes met the inclusion criteria of >2-fold 
upregulation and P < 0.05 in at least one of the cocultures 
compared with the expected value assuming no cellular 
interaction between the MSCs and chondrocytes. In total, 
137 genes were downregulated. The number of upregulated 
genes was nearly 3 times higher compared with the down­
regulated genes, which may indicate a predominance of 
pathway activation when cells are placed in coculture. A 
Venn diagram was created to identify common up- or 

downregulated genes in each of the cocultures. Cocultures 
of chondrocytes with donors A258 and A283 represented a 
closer pattern of gene up- and downregulation as compared 
with the coculture involving donor A211, which further 
highlights the presence of interdonor variability (Fig. 1c). 
In total, 92 genes were more than 2-fold upregulated in all 3 
cocultures and 74 were more than 2-fold downregulated 
(Supplementary Figure 1).

Upregulation of Autophagic and Apoptotic 
Pathways in MSCs and Chondrocyte Cocultures

Among the 92 upregulated genes, 86 were identified 
(Supplementary Table 6) by the STRING software and 51 
were found having known interactions (medium confidence 
0.4). Two main clusters were obtained: one consisting of a 
series of histones (HIST1H2AG, HIST1H2BG, HIST3H2A, 
HIST1H1E) which may indicate an effect on cell prolifera­
tion in line with previous observations.10 The second, a larger 
cluster of 51, consisted of a series of genes mainly present in 
cell death processes like autophagy and apoptosis (37 out of 
51 genes16,30) (Fig. 2). The genes identified encode surface 
(RARRES3,31 TNFRSF10A,32 PIK3R3,33 TRAF1,34), cyto­
plasmic (NCF2,35 APOL336) and transporter (TAP1, TAP2)37 

Figure 1.  (a) A 96-well plate containing the monoculture or coculture pellets. (b) Heatmap of the entire genome normalized and 
clustered using MORPEUS software. The downregulated genes are expressed in blue whereas the upregulated in red. (c) Venn diagrams 
presenting the similarity between the upregulated (top) or down-regulated (bottom) genes belonging to the different cocultures.
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proteins. A literature search of the 51 genes confirmed their 
role in cell death pathways in more detail (Supplementary 
Table 2). In general, most of the GO-terms obtained from the 
ClueGO analysis represented terms like cell stress or death 
pathways (Fig. 2 and Supplementary Table 3). Moreover, 
52.17% of the terms GO-pathways detected were related to 
ubiquitin-specific processing proteases. Ubiquitination rep­
resents a fundamental process in the autophagic machinery.38 
These data suggest that the coculturing of MSCs and chon­
drocytes may induce autophagic cell death.

Coculture Treatment Induces Autophagic Flux

To further distinguish whether the MSCs disappear from 
coculture by apoptosis or autophagy, the expression of pro-
apoptotic, anti-apoptotic, apoptotic, and autophagic mark­
ers was assessed (Fig. 3a-d).

First, we looked at 4 pro-apoptotic markers (BAD, BAX, 
BIM, BID) (Fig. 3a). These markers belong to the BCL-2 
cell-death-regulator-family and they initiate and/or mediate 
the activation of apoptosis. Here, by comparing the mono­
culture with the coculture, the variability among the MSCs 

donors is clear. Some of the genes are overexpressed in 
mono- or coculture depending on the donor. However, the 
trends between the 2 conditions do not present any statisti­
cal difference, which suggests inactivation of the apoptotic 
pathway (Supplementary Table 4). This is furthermore sup­
ported by the gene expression of four of the main caspase 
pathway regulators (CASP3, CASP5, CASP8, CASP9)16 
that did not change or were less expressed in cocultures 
(Fig. 3c). Moreover, immunofluorescence images were 
obtained to determine the level of caspase-3 (Fig. 4b). 
Caspase-3 is the final protein of the apoptotic cascade 
cycle.39 During apoptosis, the cells present disrupted nuclei 
comprising high level of caspase-3 (Fig. 4a, left). However, 
in both mono- and coculture, this characteristic is barely 
present indicating absence of apoptotic activation.

We further checked 2 of the main anti-apoptotic markers 
(BCL2 and BCL2L1). Although both did not reach a statis­
tical significance (0.11 BCL2 and 0.15 BCL2L1), both pre­
sented, for each of the 3 donors, an increase in expression in 
coculture (Fig. 3b and Supplementary Table 4). This sug­
gests an activation of anti-apoptotic processes, which may 
cause the in-activation of the caspase cycle.

Figure 2.  (a) Interconnections of the 51 upregulated genes using STRING software. Red circle symbolizes genes that have previously 
been annotated to apoptotic or autophagic processes. For other genes insufficient data were present in literature or have been 
previously annotated to other pathways. (b) Pie chart presenting the percentage of the 51 genes involved in the apoptotic or 
autophagic pathways based on gene counts in a. (c) Heatmap presenting the normalized (log 2) overexpression (red) levels of 17 
upregulated genes using the RPKM values obtained from the RNA sequencing.
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Furthermore, as regulated necrosis can be triggered by 
binding of TNF-α and FAS ligand we looked at overexpres­
sion of RIPK1, RIPK3, and MLKL. However, none of these 
genes were significantly upregulated in the cocultured com­
pared with the monoculture (Supplementary Fig. 4) exclud­
ing a role for necrosis in the disappearance of the MSCs.

We next determined the effects of autophagic markers in 
the cocultures (Fig. 4). First, we looked at multiple markers 
highly present during autophagy activation (Fig. 3d). Among 
the 8 individual markers, 7 were statistically upregulated in 
the coculture compared with the monoculture, indicating acti­
vation of the autophagic machinery at the gene level. We fur­
ther looked at the protein level using immunofluorescence. 
Here, 2 well-recognized markers (LC3B and P62) were used. 
LC3B is conjugated to the autophagosome during autophago­
some formation. P62/SQSTM1 protein interacts with both 
LC3B-II and ubiquitin protein and is degraded in autopha­
golysosomes.40 In in-activated autophagy, these 2 markers can 
be singularly present (Supplementary Fig. 3 A211) or can be 
present together but not colocalized (Supplementary Fig. 3 
A258). On the contrary, in active autophagy both markers are 
present and colocalize (Fig. 4a), which indicates creation of 
the autophagosome. Even if the behavior of the 3 donors is 

different, it is clear that the level of combined LC3B and P62 
are higher in the coculture compared with the monoculture for 
all the donors, indicating upregulation of the autophagic 
machinery.41 Taken together, these results suggest that MSCs 
exhibit enhanced autophagic flux.

Discussion

In this study, we have studied the mechanism involved in 
the progressive cell death of the MSCs in coculture with 
chondrocytes.

We used the sex mismatch between the female chondro­
cyte and male MSC donors to estimate the relative contribu­
tion of the MSCs to the gene expression in the cocultures. 
The expression of Y-chromosome-specific RNAs proved 
stable across donors. By assuming that the expression of 
Y-specific markers is not influenced by the coculture condi­
tions, a notion which is supported by previous observations, 
it is possible to estimate the contribution of the male MSC 
donors to global RPKM in coculture with female chondro­
cytes. Using this approach, we concluded that the relative 
contribution of MSCs to the RPKM in the cocultures 
dropped from 80% to 57% after 1 week of culture. 

Figure 3.  (a) Comparison between the RPKM values of pro-apoptotic markers (BAD, BAX, BCL2L11/BIM, BID); (b) of the anti-
apoptotic markers (BCL2, BCL2L1); (c) apoptotic markers (CASP-3, CASP-9, CASP-5, CASP-8); (d) of the autophagic markers 
(DRAM1, MAP1LC3B, GBP1, SQSTM1/P62, APOL3,ULK1, SOD2, UVRAG) obtained from the RNA sequencing.
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This supports previous observations where after 4 weeks of 
culture, MSCs have almost completely disappeared from 
cocultures with chondrocytes due to cell death irrespective 
of the origin of the stem cells.9 Signs of increased cell death 
were first noted at day 7 and increased at day 14.10 We rea­
soned that the 7-day time point marked the beginning of the 
disappearance of MSCs from cocultures and selected this 
time point for an RNA-seq analysis. At this time point, the 

transcriptome of the cocultures was substantially and statis­
tically different from the respective monocultures indicating 
the presence of nonadditive interactions between the 2 cell 
populations. 362 genes were upregulated of 2-fold in at least 
1 of the cocultures. Of these genes, 92 were consistently 
upregulated in each of the 3 cocultures. The considerable 
interdonor variability is in line with previous studies.42 
Interestingly, the donor A258 (female) and A283 (male), 

Figure 4.  (a) Magnification of a cell undergoing apoptosis (on the left) through caspase-3 (in red) or autophagy (on the right) through 
LC3B (red) and P62 (green). In blue nuclei (b) immunofluorescence of the 7 conditions after 7 days of culture of the caspase-3 (in red) 
and nuclei (in blue); (c) immunofluorescence of the same 7 conditions of LC3B (in red) and P62 (in green). In blue nuclei. Yellow color 
represents overimposed green and red signals. Scale bars equate to 40 μm.
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presents higher overlap in terms of both up- and downregu­
lated genes in coculture suggesting that the trophic role of 
MSCs is a generic, sex-independent property of these cells 
as noted before.43 We do realize that the method for selecting 
genes specifically regulated by the interaction between 
chondrocytes and MSCs has limitations. For example, genes 
that are inversely regulated in MSCs and chondrocytes may 
be missed. The genes identified in this study thus represent a 
snapshot of genes that are regulated in cocultures.

STRING analysis identified 2 interconnected networks 
of which the main included more than half of the total 
upregulated genes. This network describes genes involved 
in apoptotic or autophagic processes and comprised pro­
teins involved in subsequent steps of these pathways start­
ing from membrane receptor proteins (TNFRSF10A, 
PIK3R3, TRAF1) up to fundamental enzymatic compo­
nents (OAS3). Most of the genes detected are upregulated 
in one (RARRES3), or both processes (DIRAS3, ISG15, 
BMP2, PHLDA2). Other genes are involved in the inhibi­
tion of one (HBEGF-for apoptosis) or both pathways 
(ATF3). Moreover, genes such as BIRC3 and NCF2 can 
upregulate one process while inhibiting the other. 
Interestingly, these results differ from those of Wu et al.44 
where a microarray analysis identified clusters related to 
intracellular cell cycle regulators, extracellular matrix pro­
duction and secreted growth factors (FGF1 and BMP2). 
This variability could be related to the time points consid­
ered. Wu et al.44 performed the analysis at the second day of 
culture, whereas our study focused on a later time point 
(day 7). At this earlier time point, a dominant effect on cell 
proliferation was found whereas the disappearance of MSCs 
from the cocultures was first noted at day 7.9,10 Also, in our 
study, we show the upregulation of many proliferation 
markers, however, this upregulation was modest and conse­
quently did not meet the cutoff of 2-fold used (Supplementary 
Table 7). No upregulation of cartilage matrix genes was 
noted, which could be explained by the early time point 
considered. Interestingly, a decrease in COL10A1 and 
COL3A1 mRNA expression was visible indicating a reduc­
tion in the hypertrophic activity (Supplementary Fig. 5).

Like in the study of Wu et al.,44 we have found upregula­
tion of BMP2. This suggests that BMP2 plays a fundamen­
tal and prolonged role in the coculture effect. This contrasts 
FGF1, which in this study was not found upregulated. 
Combined this data may suggest that FGF-1 functions as 
trigger in an initial phase in chondrocyte proliferation, 
whereas BMP-2 is required for longer period of time and 
may sustain cartilage matrix formation.45-48 Alternatively, 
the differences could be explained by the use of adipose 
MSCs versus bone marrow MSCs in the study by Wu et al.44 
This seems, however, unlikely given the consistency in the 
trophic effect of MSCs from a variety of sources in cocul­
ture with primary chondrocytes.9 Moreover, the use of a 
more physiologically relevant hypoxic environment, used 

in this study, compared with the normoxic environment in 
the study by Wu et al.,44 may also have contributed to the 
differences in gene expression.

Apoptosis can be initiated by an extrinsic or, an intrinsic 
process both ending with the cleavage of the procaspase-3.16 
Here, the RNA expression data suggested the possible acti­
vation of the extrinsic pathway by membrane receptor 
proteins (TRAF1, TNFRSF10A) rather than the activation 
of the intrinsic pathway by genes like DIABLO, HTRA2, 
AIFM1, ENDOG, and CAD (Supplementary Table 5). Since 
we did not found an in increase or difference in the active 
form (caspase-3 within the nuclei and nuclei debris) at the 
protein level, we concluded that the cell death via the canon­
ical apoptotic pathway is likely not driving MSCs death.

Autophagy is a cellular degradation pathway that is 
essential for survival.49 However, if overexpressed, it could 
lead to neurodegeneration, cardiomyopathies, abnormali­
ties of skeletal development, and death as shown in mice 
studies.18,50 LC3-II is as a quantitative marker of autophagy 
required for the formation of the autophagosome and its 
expression is proportional to the amount of autophago­
somes in the cell. The P62/SQSTM1 protein serves as a link 
between LC3 and ubiquitinated substrates.51 P62/SQSTM1 
and P62-bound polyubiquitinated proteins become incorpo­
rated into the completed autophagosome. From the data 
obtained, LC3-II and P62/SQSTM1 were highly expressed, 
both at the gene and protein level, in the cocultures com­
pared to the monoculture conditions suggesting activation 
of the autophagic flux. Taken together, our data shows a 
strong association between the activation of autophagy and 
the disappearance of MSCs from cocultures with chondro­
cytes suggesting that the MSCs in coculture preferentially 
die by autophagy rather than by apoptosis. Formal proof of 
this hypothesis would require further studies for example 
by knocking down genes involved in the autophagic and 
apoptotic pathways.

This conclusion differs from the previous study per­
formed by Wu et al.10 where high levels of TUNEL positiv­
ity staining were detected in the pellets. TUNEL staining 
detects the DNA breaks formed when DNA fragmentation 
occurs in the last phase of apoptosis. Normally, this kind of 
apoptosis is considered as caspase-dependent procedure. 
However, cell death can proceed in caspase-independent 
apoptotic pathway, in which TUNEL positive staining is 
also observed.52 The mitochondria play a central role in 
both caspase-dependent and caspase-independent death 
pathways.53 It has been recognized that mitochondria can 
release factors involved in caspase-independent cell death, 
including apoptosis-inducing factor (AIF) and endonucle­
ase G (EndoG).54-56 In fact, AIF is believed as a key media­
tor of poly ADP-ribose (PAR) polymerase (PARP) induced 
caspase-independent cell death.57 Indeed, it has been 
reported that autophagy is a cytosolic event that controls 
caspase-independent macrophage cell death through RARP 
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mediated pathway.58 Moreover, autophagy activated by 
DNA damage can kill the cells through the autophagy regu­
lators in the absence of apoptosis.59-61 However, the major 
concern with these examples is that they represent a very 
artificial situation. Regardless, these data may explain the 
difference between these 2 studies.

It remains unclear which role MSCs cell death by 
autophagy plays in the coculture. We hypothesize that the 
autophagic extracellular vesicles generated may have an 
additional trophic effect. During autophagy, cells release a 
variety of signals, including extracellular vesicles, which 
after uptake by neighboring cells, induce cellular responses 
over short- and/or long-range distances.62 Indeed, research­
ers proposed the concept of “altruistic cell suicide” based 
on the observation that dying cells could induce prolifera­
tion of neighboring cells.63 Based on our analysis, it is con­
ceivable that the activation of autophagy in MSCs likely 
initiates this “altruistic cell death” process in coculture with 
chondrocytes. We propose a sequential mechanism where 
growth factors (FGF1 and BMP2) are released by the MSCs 
and subsequently are further enhanced by the increased 
secretion of extracellular vesicles, and their uptake by 
neighboring chondrocytes. This mechanism can explain 
how MSCs stimulate cartilage formation while simultane­
ously disappearing both in vitro and in vivo.

Additional studies should focus on the mechanism behind 
the initiation of autophagy and genetic interference studies 
using, for example, knock down approaches, the release of 
extracellular vesicles, and their uptake. Particularly interest­
ing are the studies aimed at analyzing the content of the 
autophagic vesicles. Activation of autophagy in MSCs might 
be an efficient way to increase the formation of trophic extra­
cellular vesicles. This may help in optimizing intra-articular 
injection strategies based on MSC-derived extracellular ves­
icles rather than MSCs themselves.64-66 The use of MSC-
derived extracellular vesicles rather than the cells themselves 
may avoid possible long-term phenotype changes of incorpo­
rated cells and attenuate many of the safety concerns related 
to the use of living cells.

Conclusion

In summary, here we provide evidence that MSCs in cocul­
ture with primary chondrocytes preferentially die by 
autophagy. We postulate that this altruistic cell death results 
in the formation of extracellular vesicles. These extracellu­
lar vesicles are an additional mechanism by which the 
MSCs stimulate chondrocyte proliferation and cartilage 
matrix formation in pellet cocultures.
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