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A B S T R A C T

Anterior cruciate ligament (ACL) injuries are common and of high relevance given their significant effects on
patient function, quality of life, and posttraumatic arthritis. To date, investigators have reported on the ex-
pression of genes classically associated with tendon and ligament reconstruction, including decorin (DCN) and
collagen type 1 (COL1A1 and COL1A2). However, the transcriptional fingerprint for hamstring tendons, one of
the most common autografts used for ACLR, remains to be determined. The purpose of this study was to
characterize the baseline transcriptional state of semitendinosus autografts in a rabbit model for ACLR and to
employ such characterization to guide scientifically-driven target gene selection for future analyses.

Next generation RNA sequencing was performed on whole semitendinosus autografts from four New Zealand
White rabbits (mean age: 193 ± 0 days, mean weight: 2.78 kg ± 0.15 kg) and subsequently analyzed using
gene enrichment and protein-protein interaction network analysis. Decorin, Secreted Protein Acidic and Cysteine
Rich (SPARC), Collagen type 1, and Proline and Arginine Rich End Leucine Rich Repeat Protein (PRELP) and
were determined to be the highest expressed genes with tendon-associated ontology. These results strengthen the
association between genes such as DCN, COL1A1, and COL1A2 and tendon tissues as well as provide the novel
addition of further high-expression, tendon characteristic genes such as SPARC and PRELP to provide guidance
as to which molecules serve as high-signal candidates for future ACL research. In addition, this paper provides
open-access to the expression fingerprint of hamstring autograft for ACLR in New Zealand White rabbits, thus
providing a readily-accessible collaborative reference, in alignment with ethical animal research principles.

1. Introduction

Anterior crucial ligament (ACL) injuries are of high clinical re-
levance given their frequency, effects on patient function, and potential
for associated meniscus and cartilage injury (Nessler et al., 2017;
Hewett et al., 2016; McArdle, 2010). Given their high incidence and
prolonged recovery, ACL research expenditure is amongst the highest in

orthopedics (McArdle, 2010; Samitier et al., 2015; Zaffagnini et al.,
2015). While methods of ACL injury prevention are increasingly re-
cognized and employed, the rate of ACL injuries continues to rise
(Hewett et al., 2016; Webster and Hewett, 2018).

A key aspect of ACL injury research has been the development of
various biomaterial and biologic adjuncts to ACL reconstruction (ACLR)
and associated animal models (Crispim et al., 2018; Crispim et al.,
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2017; Parry et al., 2018). Subsequently, rabbits have emerged as pro-
viding the gold standard for animal research models (Parry et al., 2018;
Wang et al., 2018; Chen et al., 2018; Liu et al., 2018). Mouse models
have been described, but there are limitations in the amount of material
for subsequent molecular, histological, and biomechanical analysis,
which has made rabbits the preferred species for research in this field
(Deng et al., 2018; Camp et al., 2017). Furthermore, with the use of
rabbit models, a semitendinosus autograft can be harvested at the time
of surgery, which provides a hamstring-based reconstruction, much as
is performed clinically in humans (MARS Group, 2014; Kaeding et al.,
2017).

As sequencing technologies and downstream bioinformatic pipe-
lines rapidly improve, the transcriptomic state of cells and tissues can
be accurately and precisely assessed. Our group has successfully utilized
RNA sequencing (RNA-seq) to characterize cell types, tissues, and dis-
ease states across a wide range of in vitro and in vivo orthopedic ap-
plications (Dudakovic et al., 2018; Paradise et al., 2018; Samsonraj
et al., 2018; Galeano-Garces et al., 2017; Dudakovic et al., 2017). In
doing so, we have come to appreciate the value of such datasets in
describing cells and tissues, phenotyping animal models, as well as
characterizing human disease states.

In reviewing the ACL literature, investigated molecular markers are
often selected and reported on the basis of academic precedence, with
quantification of genes such as decorin (DCN) and collagen type 1
(COL1A1 and COL1A2) (Juneja and Veillette, 2013; Hoyer et al., 2016;
Haslauer et al., 2014; Kato et al., 2015; Kaynak et al., 2017). However,
to date, the overall molecular fingerprint of rabbit hamstring tissue has
yet to be characterized through modern methods such as RNA se-
quencing. Therefore, it would be of significant knowledge to both
characterize the baseline transcriptional state of such ACL re-
constructive tissues and also to use this characterization for the selec-
tion of genes for future investigation.

Furthermore, a central tenet of ethical animal research is the max-
imization of benefit while minimizing unnecessary duplication of pre-
vious research. Given that a large portion of musculoskeletal rabbit
experiments are carried out using the New Zealand White species
(Wang et al., 2018; Hoyer et al., 2016; Wang et al., 2017; Papachristou
et al., 1998; Sekiguchi et al., 1998; Bachy et al., 2016), there exists
practical and ethical value in describing the basal transcriptional state
of rabbit hamstring tendons. By publishing open-access mRNA se-
quencing data for the most commonly used rabbit breed from one of the
world's largest suppliers of Specific Pathogen Free (SPF) rabbits (Cov-
ance, Princeton, NJ), data can subsequently be employed for post-re-
construction RNA sequencing comparisons as well as for the discovery
and establishment of target genes for in-laboratory RT-qPCR.

Therefore, the authors' open-access investigation of New Zealand
White rabbit semitendinosus grafts is of significant research relevance
given the paucity of literature on the baseline transcriptional state of
hamstring tissues, large volume of publications in this area, ethical
goals of animal studies, and the status of rabbits as the gold standard for
small animal ACL research.

2. Materials and methods

2.1. Hamstring harvest technique

Under sterile conditions, rabbit semitendinosus autografts were
harvested employing a midline incision centered over the anterior as-
pect of the knee for four rabbits (mean age: 193 ± 0 days, mean
weight: 2.78 kg ± 0.15 kg) (Fig. 1). A medial flap was developed along
the fascial plane of the patellar tendon by exposure of the medial col-
lateral ligament (MCL). Subsequently, a transverse incision was made in
the muscular fascia just posterior and medial to the MCL and the medial
edge of the quadriceps was lifted to expose the semitendinosus. The
distal insertion of the tendon was released and retracted to allow for
mobilization of the tendon to its proximal aspect. Thereafter, the

proximal aspect of the tendon was divided, providing 3–4 cm of tendon
autograft for subsequent reconstruction. For samples to be used for RNA
sequencing, muscle was debrided from the tendon surface employing
gentle perpendicular sweeps of a clean scalpel blade. Thereafter, tendon
was rinsed in sterile PBS and frozen at−80 °C until mRNA isolation and
sequencing.

2.2. mRNA isolation procedure

Frozen tendon biopsies were removed from −80 °C and kept in li-
quid nitrogen at all times during processing. Individually, tendons were
ground into a fine powder using a mortar and pestle set on dry ice while
re-applying liquid nitrogen as needed (approximately every 30 s).
Powder was then transferred to a sterile 1.5 ml Eppendorf tube and
700 μl of TRI Reagent (Zymogen Research) was added. Total mRNA was
extracted using a Zymogen Research Direct-zol RNA Kit (Zymogen
Research) and quantified using the NanoDrop 2000 spectrophotometer
(Thermo Fischer Scientific, Wilmington, Delaware).

2.3. RNA-sequencing

RNA sequencing and subsequent bioinformatic analysis were per-
formed in collaboration with the Mayo Clinic RNA sequencing and
bioinformatics cores, as has been previously described in detail
(Dudakovic et al., 2014; Kalari et al., 2014). RNA integrity was assessed
using the Agilent Bioanalyzer DNA 1000 chip (Invitrogen, Carlsbad,
CA). Only samples with an RNA Integrity Number (RIN) and DV200
score greater than our Sequencing Core's minimum cutoff (RIN>6 and
DV200>50%) were used for sequencing. In brief, library preparation
was performed using the TruSeq RNA library preparation kit (Illumina,
San Diego, CA). Polyadenylated mRNAs were selected using oligo dT
magnetic beads. TruSeq Kits were used for indexing to permit multiplex
sample loading on the flow cells. Paired-end sequencing reads were
generated on the Illumina HiSeq 4000 sequencer. Quality control for
concentration and library size distribution was performed using an
Agilent Bioanalyzer DNA 1000 chip and Qubit fluorometry (Invitrogen,
Carlsbad, CA). Sequence alignment of reads and determination of nor-
malized gene counts were performed using the MAP-RSeq (v.1.2.1)
workflow, utilizing TopHat 2.0.6 (Kim et al., 2013), and HTSeq (Anders
et al., 2015). Normalized read counts were expressed as reads per
kilobasepair per million mapped reads (RPKM). Data have been de-
posited in the GEO Database (accession#: GSE125360).

2.4. Tertiary analysis

Gene Ontology term overlap was conducted using the Compute
Overlap tool in the Molecular Signature Database (MSigDB) v6.2 suite
on the Gene Set Enrichment Analysis (GSEA) website (Subramanian
et al., 2005; Liberzon et al., 2011; Liberzon et al., 2015). Protein-pro-
tein interaction networks were generated using STRING Database ver-
sion 10.5 (Szklarczyk et al., 2015; Szklarczyk et al., 2017).

3. Results

To assess the quality of the dataset and offer a general description
for investigators, we first created a standard plot of average RPKM
values for all annotated genes across the four samples (Fig. 2A). Sup-
porting the efficacy and validity of our sequencing data, we note the
classic distribution of reads with few genes receiving a large number of
reads while most of the genes received 10's–100's of mapped reads.
Because an expected small proportion of genes received a large majority
of the mapped reads, we investigated these genes specifically given that
they represent genes of potential biologic significance as well as targets
for measurement in future studies (Fig. 2B). Genes classically involved
in tendon formation (i.e., DCN, COL1A1, and MGP) received 10% of the
total reads. Concurrently, we noted that several of the genes receiving
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the most reads were markers of mitochondria and muscle (14% and 3%
of total reads, respectively), as is to be expected given the intimate
relationship of tendon and muscle.

To better understand the molecular signature of the tendon samples,
we conducted Gene Ontology keyword overlap using the Gene Set
Enrichment Analysis (GSEA) Compute Overlap online tool. The top 25
expressed genes were used to compute overlaps with Gene Ontology
terms to produce a bubble chart (Fig. 2C). Gene Ontology terms related
to extracellular matrix (ECM) production demonstrated the most sig-
nificant enrichment and largest number of genes (i.e., COL1A1,
COL1A2, PRELP, SPARC, DCN) overlapping with the input gene list.
This same gene list was utilized to construct a protein-protein interac-
tion network using STRING online software (Fig. 2D) and resulted in
clustering of tendon- and muscle-specific genes into distinct nodes.

Given the presence of muscle markers in our RNA sequencing data

following sample preparation including muscle debridement, we as-
sessed the expression levels of specific muscle and tendon markers in
our novel tendon samples (accession#: GSE125360) compared to pre-
viously described muscle samples from the GEO Database (accession#:
GSE60591) (Fig. 2E). When comparing our tendon samples to those of
well-described muscle specimens, we noted significantly lower expres-
sion of muscle markers ACTA1 (p < 0.001) and TNNC1 (p=0.027) in
rabbit hamstring tissues as compared to the isolated muscle samples,
supporting that our obtained samples are representative of the tendon
transcriptional fingerprint. In addition, we observed enhanced expres-
sion of tendon-related markers DCN (p < 0.001), SPARC (p < 0.001),
COL1A2 (p=0.005), and PRELP (p < 0.001) when comparing the
tendon and muscle tissues side-by-side. Thus, although tendon and
muscle are intricately related and there may be residual muscle con-
tamination, RNA sequencing data presented is dominantly

Fig. 1. Semitendinosus graft harvest and preparation. The semitendinosus is identified on the medial side of the knee (A), divided distally and isolated along its
proximal course (B), atraumatically cleared of muscle using a fresh scalpel (C), and prepared for final washing in PBS (D).

Fig. 2. Tertiary analysis of RNA-seq derived
from hamstring grafts prior to ACLR. Read
counts were converted to reads per kilobase
per million mapped reads (RPKM) and
average expression across the four samples
was evaluated for each gene (A). The top 25
expressed genes were determined (B) and
used for subsequent Gene Ontology key-
word overlap (C) and STRING protein-pro-
tein interaction network analysis (D).
Expression levels of muscle markers (red)
and tendon markers (green) were evaluated
in pure muscle samples (Muscle) compared
to our isolated hamstring grafts (Tendon)
(E). (For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this article.)
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representative of isolated, debrided rabbit hamstring, as would be ex-
pected in the setting of ACL reconstruction.

4. Discussion

Anterior cruciate ligament injury remains a point of focus in or-
thopedic research and clinical practice given its high prevalence and
potential for subsequent meniscus and joint degeneration (Nessler et al.,
2017; Hewett et al., 2016; McArdle, 2010). A key aspect of ACL re-
search has been the creation of animal models for the evaluation of
novel biomaterials and adjuncts for ACL reconstruction, with rabbit
models providing the gold standard for ACLR given their clinically re-
levant hamstring-based technique and appropriate size for molecular,
histologic, and biomechanical studies. This paper provides novel
characterization and open-access availability of the transcriptional
fingerprint of rabbit hamstring autograft, serving as a reference for
future comparisons and a guide for establishing molecular research
targets.

There is a current need in the literature for tendon transcriptional
characterization, with few animal studies and no human studies char-
acterizing hamstring graft gene expression. Furthermore, current stu-
dies with PCR-based analyses often analyze a subset of candidate genes
which have been classically associated with tendons (i.e. COL1A1,
DCN), however, the prioritization and selection of these molecular
targets is often a matter of expert opinion and not rigorous scientific
evaluation and prioritization.

DCN was determined to be the highest expressed tendon-specific
gene in terms of RPKM counts and this gene has previously been well
described in the setting of tendons in general as well as rabbit ACL
models in particular (Juneja and Veillette, 2013; Hoyer et al., 2016;
Haslauer et al., 2014). Additionally, we observed a high basal level of
COL1A1 and COL1A2, as has been previously well characterized (Hoyer
et al., 2016; Kato et al., 2015; Kaynak et al., 2017). However, SPARC
was noted to be 2nd highest expressed tendon marker and the 6th
highest overall gene, yet a paucity of data exists for this marker in the
tendon and ligament setting (Maillard et al., 1992; Gagliano et al.,
2009; Gehwolf et al., 2016). This highlights the need for large RNA
sequencing efforts prior to focused, PCR-based evaluation of tissues.
Given its large role in basal hamstring expression, SPARC, which serves
as a cysteine-rich acidic matrix-associated protein involved in cell
growth and extracellular matrix synthesis, should be highly considered
for evaluation in rabbit models of tendon healing.

In addition, PRELP, a leucine-rich protein involved in connective
tissue extracellular matrix structure and molecular anchoring, provides
a significant target for tendon studies. To date, the role of PRELP in
tendon tissues has only been discussed in one paper focusing on bovine
deep flexor tendons (Vogel and Meyers, 1999). The protein has been
previously characterized to be the major proteinaceous component of
flexor tendons along with type I collagen (85% dry weight) and decorin
(DCN, 1% dry weight) (Vogel and Meyers, 1999; Koob and Vogel,
1987). In this study, PRELP's status as the 15th most expressed gene
amongst 20,000+ genes and third highest tendon specific signal after
DCN, SPARC, and COL1A1/COL1A2, place it as candidate for prior-
itized quantification when evaluating ACLR, especially given that pre-
vious papers have focused on and evaluated lower-signal genes such as
VIM, MGP, and COL4A1 (Park et al., 2006; Kuo et al., 2010; Smith
et al., 2012; Jiang et al., 2015).

This paper has certain important limitations. First, as these grafts
are intricately involved with muscle both on physical and molecular
levels, we anticipate a small degree of muscle contamination, even
following careful surgical debridement. Despite this, we have demon-
strated that our samples are predominantly tendinous, with high
tendon-specific signals such as DCN and SPARC and significantly de-
creased muscle markers such as ACTA1 and TPM2. Therefore, we are
confident in presenting these samples as tendon biopsies with slight
muscle contamination as to be expected after collection from the

hamstring. Second, there may be differences in tendon gene expression
with various suppliers of New Zealand White rabbits and other common
species used in research. To this end, we have evaluated a well-estab-
lished rabbit breed, as provided by one of the largest research providers
of rabbits globally in order to improve generalizability and applicability
for other laboratory groups. Finally, given that gene expression may
vary with developmental status and age, we have provided the ages and
weights of the evaluated rabbits for groups wishing to optimize and
reproduce our experimental conditions.

5. Conclusion

By determining the RNA sequencing of whole rabbit semitendinosus
autograft, this paper provides novel guidance as to which molecules
serve as high-signal candidate genes for further analysis and pre- and
post-intervention comparisons. In doing so, we have strengthened the
association between genes such as COL1A1, COL1A2, and DCN and
tendon tissues as well as provided the novel addition of further high-
expression, tendon characteristic genes such as SPARC and PRELP. In
addition, this paper provides open-access to the expression fingerprint
of hamstring autograft for ACLR in New Zealand White rabbits, thus
providing a readily-accessible collaborative reference, in alignment
with ethical animal research principles.
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