484 research outputs found

    Natural function and structural modification of climacostol, a ciliate secondary metabolite

    Get PDF
    The review highlights the main results of two decades of research on climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol), the resorcinolic lipid produced and used by the ciliated protozoan Climacostomum virens for chemical defense against a wide range of predators, and to assist its carnivorous feeding. After the first studies on the physiological function of climacostol, the compound and some analogues were chemically synthesized, thus allowing us to explore both its effect on different prokaryotic and eukaryotic biological systems, and the role of its relevant structural traits. In particular, the results obtained in the last 10 years indicate climacostol is an effective antimicrobial and anticancer agent, bringing new clues to the attempt to design and synthesize additional novel analogues that can increase or optimize its pharmacological properties

    Occupational exposure to formaldehyde and risk of non hodgkin lymphoma: A meta-Analysis

    Get PDF
    Background: Formaldehyde, a widely used chemical, is considered a human carcinogen. We report the results of a meta-Analyses of studies on the relationship between occupational exposure to formaldehyde and risk of non-Hodgkin lymphoma (NHL). Methods: We performed a systematic review and meta-Analysis according to international guidelines and we identified 12 reports of occupational populations exposed to formaldehyde. We evaluated inter-study heterogeneity and we applied a random effects model. We conducted a cumulative meta-Analysis and a meta-Analysis according to estimated average exposure of each study population. Results: The meta-Analysis resulted in a summary relative risk (RR) for NHL of 0.93 (95% confidence interval 0.83-1.04). The cumulative meta-Analysis suggests that higher RRs were detected in studies published before 1986, while studies available after 1986 did not show an association. No differences were found between different levels of occupational exposure. Conclusions Notwithstanding some limitations, the results of this meta-Analysis do not support the hypothesis of an association between occupational exposure to formaldehyde and risk of NHL

    Health effects of living near an incinerator: A systematic review of epidemiological studies, with focus on last generation plants

    Get PDF
    Huge reductions in incinerators' emissions occurred over time, and results of older studies cannot be directly generalized to modern plants. We conducted a systematic review of the epidemiologic evidence of the health effects of incinerators, classifying plants in three generations, according to emission limits. A systematic search identified 63 epidemiologic studies, published in English, investigating health effects of incinerators on humans. We focused on cancer, cardio-cerebrovascular diseases (CVD) and respiratory diseases, pregnancy outcomes and congenital anomalies. Only six studies in the general population were on third generation incinerators providing data on pregnancy outcomes and congenital anomalies. Given the heterogeneity of methods, the abundance of ecological/semi-ecological studies and the lack of reliable quantitative measures of exposure in several studies we did not perform any meta-analysis. No excesses emerged concerning all cancers and lung cancer. An excess of non-Hodgkin lymphoma was reported in some earlier studies, but not for second generation plants. Possible excesses of soft tissue sarcomas were confined to earlier incinerators and the areas closer to the plants. No clear association emerged for CVD and diseases of the respiratory system. Several different pregnancy outcomes were considered, and no consistent association emerged, in spite of a few positive results. Studies were negative for congenital anomalies as a whole. Sporadic excesses were reported in a few studies for specific types of anomalies, but no consistent pattern emerged. Evaluation of the evidence was hindered by heterogeneity in reporting and classification of outcomes across studies. Direct evidence from third generation plants is scarce. Methodological issues in study design (mainly related to exposure assessment, confounding and ecological design) and analysis make interpretation of results complex. In spite of this, the overall evidence suggests that, if there were any excesses at all for older incinerators, they were modest at most. Additional monitoring of third generation plants needs to overcome methodological weakness

    Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy

    Get PDF
    Neuronal injury plays a major role in diabetic retinopathy (DR). Our hypothesis was that the balance between neuronal death and survival may depend on a similar equilibrium between apoptosis and autophagy and that a neuroprotectant may act by influencing this equilibrium. Ex vivo mouse retinal explants were treated with high glucose (HG) for 10days and the somatostatin analog octreotide (OCT) was used as a neuroprotectant. Chloroquine (CQ) was used as an autophagy inhibitor. Apoptotic and autophagic markers were evaluated using western blot and immunohistochemistry. HG-treated explants displayed a significant increase of apoptosis paralleled by a significant decrease of the autophagic flux, which was likely to be due to increased activity of the autophagy regulator mTOR (mammalian target of rapamycin). Treatment with OCT rescued HG-treated retinal explants from apoptosis and determined an increase of autophagic activity with concomitant mTOR inhibition. Blocking the autophagic flux with CQ completely abolished the anti-apoptotic effect of OCT. Immunohistochemical observations showed that OCT-induced autophagy is localized to populations of bipolar and amacrine cells and to ganglion cells. These observations revealed the antithetic role of apoptosis and autophagy, highlighting their equilibrium from which neuronal survival is likely to depend. These data suggest the crucial role covered by autophagy, which could be considered as a molecular target for DR neuroprotective treatment strategies

    Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy

    Get PDF
    Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer

    Do clinical decision-support reminders for medical providers improve isoniazid preventative therapy prescription rates among HIV-positive adults? Study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: This document describes a research protocol for a study designed to estimate the impact of implementing a reminder system for medical providers on the use of isoniazid preventative therapy (IPT) for adults living with HIV in western Kenya. People living with HIV have a 5% to 10% annual risk of developing active tuberculosis (TB) once infected with TB bacilli, compared to a 5% lifetime risk in HIV-negative people with latent TB infection. Moreover, people living with HIV have a 20-fold higher risk of dying from TB. A growing body of literature suggests that IPT reduces overall TB incidence and is therefore of considerable benefit to patients and the larger community. However, in 2009, of the estimated 33 million people living with HIV, only 1.7 million (5%) were screened for TB, and about 85,000 (0.2%) were offered IPT. METHODS/DESIGN: This study will examine the use of clinical decision-support reminders to improve rates of initiation of preventative treatment in a TB/HIV co-morbid population living in a TB endemic area. This will be a pragmatic, parallel-group, cluster-randomized superiority trial with a 1:1 allocation to treatment ratio. For the trial, 20 public medical facilities that use clinical summary sheets generated from an electronic medical records system will participate as clusters. All HIV-positive adult patients who complete an initial encounter at a study cluster and at least one return encounter during the study period will be included in the study cohort. The primary endpoint will be IPT prescription at 3 months post the initial encounter. We will conduct both individual-level and cluster-level analyses. Due to the nature of the intervention, the trial will not be blinded. This study will contribute to the growing evidence base for the use of electronic health interventions in low-resource settings to promote high-quality clinical care, health system optimization and positive patient outcomes. Trial registration ClinicalTrials.gov NCT01934309, registered 29 August 2013

    Acid Sphingomyelinase Downregulation Enhances Mitochondrial Fusion and Promotes Oxidative Metabolism in a Mouse Model of Melanoma

    Get PDF
    Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells

    The natural compound climacostol as a prodrug strategy based on pH activation for efficient delivery of cytotoxic small agents

    Get PDF
    We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds
    • …
    corecore