53 research outputs found

    Evaluating heuristics for tabletop user segmentation based on simultaneous interaction

    Full text link
    Differentiating between users that interact on a tabletop could be beneficial for collaborative tasks to support territoriality-oriented features such as a more efficient space management or a better presentation of the contents. In this paper, we design a novel algorithm for the user differentiation or segmentation based on the simultaneous manipulation of the controls. This is a potential differentiating factor that has remained unexplored so far, and in combination with other factors may become relevant to successfully accomplish such differentiation task. Basically it relies on the idea that users manipulate digital elements with a single hand, and hence, if two controls are being used at the same time, they most likely belong to different users. On the generic algorithm, three different versions have been implemented that include several heuristics to address the problem. The comparison under a simulated experiment shows that the heuristic involving more knowledge on distances on user controls performed better according to different goodness functions. This shows promising to further development and refinement of the approach by expanding it with other potential factors to eventually build a robust user differentiation subsystem.This work received financial support from the Spanish Ministry of Education under the National Strategic Program of Research and Project TSI2010-20488. Our thanks to the ASIC/Polimedia team for the support in computer hardware.García Sanjuan, F.; Jaén Martínez, FJ.; Catalá Bolós, A. (2013). Evaluating heuristics for tabletop user segmentation based on simultaneous interaction. Expert Systems with Applications. 40(14):5578-5587. https://doi.org/10.1016/j.eswa.2013.04.011S55785587401

    TangiWheel: A widget for manipulating collections on tabletop displays supporting hybrid Input modality

    Full text link
    In this paper we present TangiWheel, a collection manipulation widget for tabletop displays. Our implementation is flexible, allowing either multi-touch or interaction, or even a hybrid scheme to better suit user choice and convenience. Different TangiWheel aspects and features are compared with other existing widgets for collection manipulation. The study reveals that TangiWheel is the first proposal to support a hybrid input modality with large resemblance levels between touch and tangible interaction styles. Several experiments were conducted to evaluate the techniques used in each input scheme for a better understanding of tangible surface interfaces in complex tasks performed by a single user (e.g., involving a typical master-slave exploration pattern). The results show that tangibles perform significantly better than fingers, despite dealing with a greater number of interactions, in situations that require a large number of acquisitions and basic manipulation tasks such as establishing location and orientation. However, when users have to perform multiple exploration and selection operations that do not require previous basic manipulation tasks, for instance when collections are fixed in the interface layout, touch input is significantly better in terms of required time and number of actions. Finally, when a more elastic collection layout or more complex additional insertion or displacement operations are needed, the hybrid and tangible approaches clearly outperform finger-based interactions.. ©2012 Springer Science+Business Media, LLC & Science Press, ChinaThe work is supported by the Ministry of Education of Spain under Grant No. TSI2010-20488. Alejandro Catala is supported by an FPU fellowship for pre-doctoral research staff training granted by the Ministry of Education of Spain with reference AP2006-00181.Catalá Bolós, A.; García Sanjuan, F.; Jaén Martínez, FJ.; Mocholi Agües, JA. (2012). TangiWheel: A widget for manipulating collections on tabletop displays supporting hybrid Input modality. Journal of Computer Science and Technology. 27(4):811-829. doi:10.1007/s11390-012-1266-4S811829274Jordà S, Geiger G, Alonso M, Kaltenbrunner M. The reacTable: Exploring the synergy between live music performance and tabletop tangible interfaces. In Proc. TEI 2007, Baton Rouge, LA, USA, Feb. 15-17, 2007, pp.139–146.Vandoren P, van Laerhoven T, Claesen L, Taelman J, Raymaekers C, van Reeth F. IntuPaint: Bridging the gap between physical and digital painting. In Proc. TABLETOP2008, Amterdam, the Netherlands, Oct. 1-3, 2008, pp.65–72.Schöning J, Hecht B, Raubal M, Krüger A, Marsh M, Rohs M. Improving interaction with virtual globes through spatial thinking: Helping users ask “why?”. In Proc. IUI 2008, Canary Islans, Spain, Jan. 13-16, 2008, pp.129–138.Fitzmaurice GW, BuxtonW. An empirical evaluation of graspable user interfaces: Towards specialized, space-multiplexed input. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.43–50.Tuddenham P, Kirk D, Izadi S. Graspables revisited: Multitouch vs. tangible input for tabletop displays in acquisition and manipulation tasks. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.2223–2232.Lucchi A, Jermann P, Zufferey G, Dillenbourg P. An empirical evaluation of touch and tangible interfaces for tabletop displays. In Proc. TEI 2010, Cambridge, USA, Jan. 25-27, 2010, pp.177–184.Fitzmaurice G W, Ishii H, Buxton W. Bricks: Laying the foundations for graspable user interfaces. In Proc. CHI 1995, Denver, USA, May 7-11, 1995, pp.442–449.Ishii H, Ullmer B. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.234–241.Ullmer B, Ishii H, Glas D. mediaBlocks: Physical containers, transports, and controls for online media. In Proc. SIGGRAPH1998, Orlando, USA, July 19-24, 1998, pp.379–386.Shen C, Hancock M S, Forlines C, Vernier F D. CoR2Ds: Context-rooted rotatable draggables for tabletop interaction. In Proc. CHI 2005, Portland, USA, April 2-7, 2005, pp.1781–1784.Lepinski G J, Grossman T, Fitzmaurice G. The design and evaluation of multitouch marking menus. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.2233–2242.Accot J, Zhai S. Beyond Fitts’ law: Models for trajectorybased HCI tasks. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.295–302.Song H, Kim B, Lee B, Seo J. A comparative evaluation on tree visualization methods for hierarchical structures with large fan-outs. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.223–232.Bailly G, Lecolinet E, Nigay L. Wave menus: Improving the novice mode of hierarchical marking menus. In Proc. INTERACT2007, Río de Janeiro, Brazil, Sept. 10-14, 2007, pp.475–488.Zhao S, Agrawala M, Hinckley K. Zone and polygon menus: Using relative position to increase the breadth of multi-stroke marking menus. In Proc. CHI 2006, Montreal, Canada, April 24-27, 2006, pp.1077–1086.Patten J, Recht B, Ishii H. Interaction techniques for musical performance with tabletop tangible interfaces. In Proc. ACE2006, Hollywood, USA, Jun. 14-16, 2006, Article No.27.Weiss M, Wagner J, Jansen Y, Jennings R, Khoshabeh R, Hollan J D, Borchers J. SLAP widgets: Bridging the gap between virtual and physical controls on tabletops. In Proc. CHI 2009, Boston, USA, April 4-9, 2009, pp.481–490.Hancock M, Hilliges O, Collins C, Baur D, Carpendale S. Exploring tangible and direct touch interfaces for manipulating 2D and 3D information on a digital table. In Proc. ITS 2009, Banff, Canada, Nov. 23-25, pp.77–84.Hilliges O, Baur D, Butz A. Photohelix: Browsing, sorting and sharing digital photo collections. In Proc. Horizontal Interactive Human-Computer Systems (TABLETOP2007), Newport, Rhode Island, USA, Oct. 10-12, 2007, pp.87–94.Hesselmann T, Flöring S, Schmidt M. Stacked half-Pie menus: Navigating nested menus on interactive tabletops. In Proc. ITS 2009, Banff, Canada, Nov. 23-25, 2009, pp.173–180.Gallardo D, Jordà S. Tangible jukebox: Back to palpable music. In Proc. TEI 2010, Boston, USA, Jan. 25-27, 2010, pp.199–202.Fishkin K. A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous Computing, 2004, 8(5): 347–358.Catala A, Jaen J, Martinez-Villaronga A A, Mocholi J A. AGORAS: Exploring creative learning on tangible user interfaces. In Proc. COMPSAC 2011, Munich, Germany, July 18-22, 2011, pp.326–335.Catala A, Garcia-Sanjuan F, Azorin J, Jaen J, Mocholi J A. Exploring direct communication and manipulation on interactive surfaces to foster novelty in a creative learning environment. IJCSRA, 2012, 2(1): 15–24.Catala A, Jaen J, van Dijk B, Jord`a S. Exploring tabletops as an effective tool to foster creativity traits. In Proc. TEI 2012, Kingston, Canada, Feb. 19-22, 2012, pp.143–150.Hopkins D. Directional selection is easy as pie menus. In: The Usenix Association Newsletter, 1987, 12(5): 103.Microsoft Surface User Experience Guidelines. http://msdn.microsoft.com/en-us/library/ff318692.aspx , May 2011.Maydak M, Stromer R, Mackay H A, Stoddard L T. Stimulus classes in matching to sample and sequence production: The emergence of numeric relations. Research in Developmental Disabilities, 1995, 16(3): 179–204

    Enseñando a diseñar sistemas software para la sostenibilidad: una experiencia docente

    Get PDF
    Hoy en día, la sostenibilidad se constituye en uno de los motores claves de la innovación. Así mismo, las empresas de software vienen también demandando nuevas habilidades para continuar su presencia en un mercado muy competitivo. Con el fin de poder atender dichas demandas, una escuela de invierno en modo online fue organizada para complementar la formación brindada en las universidades a los futuros profesionales de ingeniería informática. La escuela de invierno contó con la participación de profesores invitados que cubren 3 módulos: creatividad y software sostenible, diseño de sistemas software persuasivos, e interfaces de usuario interactivas e inteligentes. Los estudiantes trabajaron en equipos centrados en la solución de problemas de un caso real. En el presente artículo se describe el contenido y planificación de cada uno de estos módulos. Además un conjunto de lecciones aprendidas, que son el resultado de analizar los entregables proveídos por los estudiantes y respuestas a un cuestionario de calidad de los cursos impartidos, son también discutidas.Today, sustainability is one of the key drivers of innovation. Likewise, software companies are also demanding new skills to continue their presence in a very competitive market. In order to be able to meet these demands, an online winter school was organized to complement the training provided in universities to future computer engineering professionals. The invited professors at the winter school covered 3 modules: Creativity and sustainable software, design of persuasive software systems, and interactive and intelligent user interfaces. The students worked in teams focused on solving problems of a real case. This article describes the content and planning of each of these modules. In addition, a set of lessons learned, which are the result of analyzing the deliverables provided by the students and responses to a quality questionnaire of the courses taught, are also discussed.Este trabajo ha recibido parcialmente financiación del Programa Erasmus Mundus Joint Master Degree SE4GD-619839, así como de la Consellería de Educación, Universidade e Formación Profesional (acreditación 2019-2022 ED431G-2019/04 y grupo competitivo ED431C2022/19) y el Fondo Europeo de Desarrollo Regional, que reconoce al CiTIUS como centro de investigación del sistema gallego de universidades

    AI literacy in K‑12: a systematic literature review

    Get PDF
    The successful irruption of AI-based technology in our daily lives has led to a growing educational, social, and political interest in training citizens in AI. Education systems now need to train students at the K-12 level to live in a society where they must interact with AI. Thus, AI literacy is a pedagogical and cognitive challenge at the K-12 level. This study aimed to understand how AI is being integrated into K-12 education worldwide. We conducted a search process following the systematic literature review method using Scopus. 179 documents were reviewed, and two broad groups of AI literacy approaches were identified, namely learning experience and theoretical perspective. The first group covered experiences in learning technical, conceptual and applied skills in a particular domain of interest. The second group revealed that significant efforts are being made to design models that frame AI literacy proposals. There were hardly any experiences that assessed whether students understood AI concepts after the learning experience. Little attention has been paid to the undesirable consequences of an indiscriminate and insufficiently thought-out application of AI. A competency framework is required to guide the didactic proposals designed by educational institutions and define a curriculum reflecting the sequence and academic continuity, which should be modular, personalized and adjusted to the conditions of the schools. Finally, AI literacy can be leveraged to enhance the learning of disciplinary core subjects by integrating AI into the teaching process of those subjects, provided the curriculum is co-designed with teachersThis work has partially been funded by the Spanish Ministry of Science, Innovation and Universities (PID2021-123152OB-C21), and the Consellería de Educación, Universidade e Formación Profesional (accreditation 2019–2022 ED431C2022/19 and reference competitive group, ED431G2019/04) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS— Centro Singular de Investigación en Tecnoloxías Intelixentes da Universidade de Santiago de Compostela as a Research Center of the Galician University System. This work also received support from the Educational Knowledge Transfer (EKT), the Erasmus + project (reference number 612414-EPP-1-2019-1- ES-EPPKA2-KA) and the Knowledge Alliances call (Call EAC/A03/2018)S

    Negative UX-Based Approach for Deriving Sustainability Requirements

    Get PDF
    In this chapter, a Negative User Experience (NUX)-based method for deriving sustainability requirements of persuasive software systems is proposed. The method relies on the analysis of NUX assessment, and the exploitation of relationships between the SQ model and the PSD model, which are well-known models for sustainability-quality in software systems and persuasive system design respectively. To illustrate the method, a user study has been conducted involving people in their real working environments while using specific software intended to change their behavior for preventing or reducing repetitive strain injury (RSI). The method allowed us to discover thirteen requirements that contribute to social, technical and economic sustainability dimensions
    corecore