18 research outputs found

    Network-based analysis reveals differences in plant assembly between the native and the invaded ranges

    Full text link
    Associated with the introduction of alien species in a new area, interactions with other native species within the recipient community occur, reshaping the original community and resulting in a unique assemblage. Yet, the differences in community assemblage between native and invaded ranges remain unclear. Mediterranean grasslands provide an excellent scenario to study community assembly following transcontinental naturalisation of plant species. Here, we compared the community resemblance of plant communities in Mediterranean grasslands from both the native (Spain) and invaded (Chile) ranges. We used a novel approach, based on network analysis applied to co-occurrence analysis in plant communities, allowing us to study the co-existence of native and alien species in central Chile. This useful methodology is presented as a step forward in invasion ecology studies and conservation strategies. We found that community structure differed between the native and the invaded range, with alien species displaying a higher number of connections and, therefore, acting as keystones to sustain the structure within the invaded community. Alien species acting like keystones within the Chilean grassland communities might exacerbate the threat posed by biological invasions for the native biodiversity assets. Controlling the spread of the alien species identified here as keystones should help managing potential invasion in surrounding areas. Network analyses is a free, easy-to-implement and straightforward visual tool that can be widely used to reveal shifts in native communities and elucidate the role of multiple invaders into communitie

    Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis

    Get PDF
    Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. nondispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness

    The invasiveness of Hypochaeris glabra (Asteraceae): Responses in morphological and reproductive traits for exotic populations

    Get PDF
    Scientists have been interested in many topics driven by biological invasions, such as shifts in the area of distribution of plant species and rapid evolution. Invasiveness of exotic plant species depends on variations on morphological and reproductive traits potentially associated with reproductive fitness and dispersal ability, which are expected to undergo changes during the invasion process. Numerous Asteraceae are invasive and display dimorphic fruits, resulting in a bet-hedging dispersal strategy ±wind-dispersed fruits versus animal-dispersed fruits±. We explored phenotypic differentiation in seed morphology and reproductive traits of exotic (Chilean) and native (Spanish) populations of Hypochaeris glabra. We collected flower heads from five Spanish and five Chilean populations along rainfall gradients in both countries. We planted seeds from the ten populations in a common garden trial within the exotic range to explore their performance depending on the country of origin (native or exotic) and the environmental conditions at population origin (precipitation and nutrient availability). We scored plant biomass, reproductive traits and fruit dimorphism patterns. We observed a combination of bet-hedging strategy together with phenotypic differentiation.Native populations relied more on bet-hedging while exotic populations always displayed greater proportion of wind-dispersed fruits than native ones. This pattern may reflect a strategy that might entail a more efficient long distance dispersal of H. glabra seeds in the exotic range, which in turn can enhance the invasiveness of this species

    Flora of the mediterranean basin in the chilean espinales: evidence of colonisation

    Get PDF
    In Chile’s Mediterranean region, over 18% of plant species are alien. This is particularly noteworthy in some agrosilvopastoral systems such as the espinales, which are functionally very similar to the Spanish dehesas and are of great ecological and socioeconomic interest. In the present paper we analyse Chile’s non-native flora, considering three scales of analysis: national, regional (the central region, presenting a Mediterranean climate) and at community level (the espinales within the central region). We compare this flora with that recorded in areas of the Iberian Peninsula with similar lithological and geomorphological characteristics, and land use. We discuss possible mechanisms that might have been operating in the floristic colonisation from the Mediterranean Basin to Chile’s Mediterranean region

    Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression

    Get PDF
    Copyright © 2009 The Authors. Copyright © ECOGRAPHY 2009.A major focus of geographical ecology and macro ecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regressions, because the relative importance of explanatory variables, as measured by regression coefficients, can shift depending on whether spatially explicit or non-spatial modelling is used. However, the extent to which coefficients may shift and why shifts occur are unclear. Here, we analyze the relationship between environmental predictors and the geographical distribution of species richness, body size, range size and abundance in 97 multi-factorial data sets. Our goal was to compare standardized partial regression coefficients of non-spatial ordinary least squares regressions (i.e. models fitted using ordinary least squares without taking autocorrelation into account; “OLS models” hereafter) and eight spatial methods to evaluate the frequency of coefficient shifts and identify characteristics of data that might predict when shifts are likely. We generated three metrics of coefficient shifts and eight characteristics of the data sets as predictors of shifts. Typical of ecological data, spatial autocorrelation in the residuals of OLS models was found in most data sets. The spatial models varied in the extent to which they minimized residual spatial autocorrelation. Patterns of coefficient shifts also varied among methods and datasets, although the magnitudes of shifts tended to be small in all cases. We were unable to identify strong predictors of shifts, including the levels of autocorrelation in either explanatory variables or model residuals. Thus, changes in coefficients between spatial and non-spatial methods depend on the method used and are largely idiosyncratic, making it difficult to predict when or why shifts occur. We conclude that the ecological importance of regression coefficients cannot be evaluated with confidence irrespective of whether spatially explicit modelling is used or not. Researchers may have little choice but to be more explicit about the uncertainty of models and more cautious in their interpretation

    Variación anual de la microestructura de un pastizal mediterráneo en tres estados sucesionales

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Ecología. Fecha de lectura: 23-06-198

    Variacion anual de la microestructura de un pastizal mediterraneo en tres estados sucesionales

    No full text
    2 v.Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    Biodiversity and human well-being: the role of functional diversity

    Get PDF
    Las relaciones entre biodiversidad y funcionamiento de los ecosistemas han sido ampliamente tratadas en la literatura; sin embargo, sólo en los últimos años se ha puesto de manifiesto la importancia de la biodiversidad en el mantenimiento del bienestar humano. En este contexto, la diversidad funcional ofrece una forma novedosa de aproximarse a las relaciones causales existentes entre los impulsores de cambio ambiental global, la biodiversidad, el funcionamiento ecológico y los servicios esenciales para el bienestar humano que brindan los ecosistemas. En este artículo se presenta una síntesis de los principales conceptos relacionados con la diversidad funcional, así como las herramientas para su análisis y valoración. Por último, se muestra cómo incorporar la información obtenida bajo este enfoque funcional en la toma de decisiones relacionadas con la gestión de la biodiversidad.The relationships between biodiversity and ecosystem functioning have been extensively addressed in the scientific literature. However, the importance of biodiversity for human well-being has been recognized only recently. In this context, the concept of functional diversity offers an interesting and innovative approach to the causal links among global change drivers, biodiversity, ecosystem functioning, and the ecosystem services essential for human well-being. In this paper, we summarize the main concepts, analytical aspects, and valuation tools related to functional diversity. Finally, we show how ecological data derived from this functional approach can be incorporated into decision-making processes involved in biodiversity management.Este trabajo ha sido financiado parcialmente por el Instituto Interamericano para el Estudio del Cambio Global (IAI CRN II 2015, bajo financiamiento de US National Science Foundation Grant GEO-0452325) y por la Consejería de Medio Ambiente de la Junta de Andalucía (Proyecto NET413308/1)

    Alien plant species coexist over time with native ones in Chilean Mediterranean grasslands

    No full text
    Aims Alien species are commonly considered as harmful weeds capable of decreasing native biodiversity and threatening ecosystems. Despite this assumption, little is known about the long-term patterns of the native–alien relationships associated with human disturbed managed landscapes. This study aims to elucidate the community dynamics associated with a successional gradient in Chilean Mediterranean grasslands, considering both native and alien species. Methods Species richness (natives and aliens separately) and life-form (annuals and perennials) were recorded in four Chilean post-agricultural grazed grasslands each covering a broad successional gradient (from 1 to 40 years since crop abandonment). A detrended correspondence analysis (DCA), mixed model effects analyses and correlation tests were conducted to assess how this temporal gradient influenced natives and aliens through community dynamics. Important Findings Our results show different life-form patterns between natives and aliens over time. Aliens were mainly represented by annuals (especially ruderals and weeds), which were established at the beginning of succession. Annual aliens also predominated at midsuccessional stages, but in old grasslands native species were slightly more representative than alien ones within the community. In the late successional states, positive or no correlations at all between alien and native species richness suggested the absence of competition between both species groups, as a result of different strategies in occupation of the space. Community dynamics over time constitute a net gain in biodiversity, increasing natives and maintaining a general alien pool, allowing the coexistence of both. Biotic interactions including facilitation and/or tolerance processes might be occurring in Chilean post-agricultural grasslands, a fact that contradicts the accepted idea of the alien species as contenders

    Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands

    No full text
    Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and colonizer species together
    corecore