4,973 research outputs found

    On the perturbative S-matrix of generalized sine-Gordon models

    Full text link
    Motivated by its relation to the Pohlmeyer reduction of AdS_5 x S^5 superstring theory we continue the investigation of the generalized sine-Gordon model defined by SO(N+1)/SO(N) gauged WZW theory with an integrable potential. Extending our previous work (arXiv:0912.2958) we compute the one-loop two-particle S-matrix for the elementary massive excitations. In the N = 2 case corresponding to the complex sine-Gordon theory it agrees with the charge-one sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in the Yang-Baxter equation which we interpret as a gauge artifact related to the fact that the scattered particles are not singlets under the residual global subgroup of the gauge group

    Exploring the canonical behaviour of long gamma-ray bursts using an intrinsic multiwavelength afterglow correlation

    Get PDF
    In this paper, we further investigate the relationship, reported by Oates et al., between the optical/UV afterglow luminosity (measured at restframe 200 s) and average afterglow decay rate (measured from restframe 200 s onwards) of long duration gamma-ray bursts (GRBs). We extend the analysis by examining the X-ray light curves, finding a consistent correlation. We therefore explore how the parameters of these correlations relate to the prompt emission phase and, using a Monte Carlo simulation, explore whether these correlations are consistent with predictions of the standard afterglow model. We find significant correlations between: log  LO, 200 s and log  LX, 200 s; αO, >200 s and αX, >200 s, consistent with simulations. The model also predicts relationships between log Eiso and log  L200 s; however, while we find such relationships in the observed sample, the slope of the linear regression is shallower than that simulated and inconsistent at ≳3σ. Simulations also do not agree with correlations observed between log  L200 s and α> 200 s, or logEiso logEiso and α> 200 s. Overall, these observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models

    Evolutionary plasticity determination by orthologous groups distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic plasticity may be understood as the ability of a functional gene network to tolerate alterations in its components or structure. Usually, the studies involving gene modifications in the course of the evolution are concerned to nucleotide sequence alterations in closely related species. However, the analysis of large scale data about the distribution of gene families in non-exclusively closely related species can provide insights on how plastic or how conserved a given gene family is. Here, we analyze the abundance and diversity of all Eukaryotic Clusters of Orthologous Groups (KOG) present in STRING database, resulting in a total of 4,850 KOGs. This dataset comprises 481,421 proteins distributed among 55 eukaryotes.</p> <p>Results</p> <p>We propose an index to evaluate the evolutionary plasticity and conservation of an orthologous group based on its abundance and diversity across eukaryotes. To further KOG plasticity analysis, we estimate the evolutionary distance average among all proteins which take part in the same orthologous group. As a result, we found a strong correlation between the evolutionary distance average and the proposed evolutionary plasticity index. Additionally, we found low evolutionary plasticity in <it>Saccharomyces cerevisiae </it>genes associated with inviability and <it>Mus musculus </it>genes associated with early lethality. At last, we plot the evolutionary plasticity value in different gene networks from yeast and humans. As a result, it was possible to discriminate among higher and lower plastic areas of the gene networks analyzed.</p> <p>Conclusions</p> <p>The distribution of gene families brings valuable information on evolutionary plasticity which might be related with genetic plasticity. Accordingly, it is possible to discriminate among conserved and plastic orthologous groups by evaluating their abundance and diversity across eukaryotes.</p> <p>Reviewers</p> <p>This article was reviewed by Prof Manyuan Long, Hiroyuki Toh, and Sebastien Halary.</p

    Silvopastoral systems as a tool for territorial sustainability and biodiversity

    Get PDF
    Rural and livestock population evolution in the inner north of Portugal has demonstrated a great regression with consequences for environment and nature conservation. In this context, and taking into account that pastoral activity has shaped the natural areas of mountain territories since its beginning and that territories are currently part of Natura 2000 network, rethinking the importance of such activity has become vital. The constraints affecting daily tasks performed by shepherds and livestock breeders as well as the installed social segregation are a strong limitation. However, current research developed in the context of nature conservation has demonstrated the importance of the landscape mosaic promoted by grazing in the preservation of priority habitats. In this way, it is urgent to assess the issue of shepherds and livestock breeders’ image in terms of their roles, relationships and concerns, as well as to assess pastoralism socioeconomics in regard to self-consumption, market and rural self-sufficiency. In this perspective, this work presents an analysis of the adaptation of grazing to current times, perceiving its limitations and success potential.This work is supported by European Structural and Investment Funds, FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project No. 006971 (UID/SOC/04011)], and national funds, through FCT, Portuguese Foundation for Science and Technology under project UID/SOC/04011/2013.info:eu-repo/semantics/publishedVersio

    Exploring the canonical behaviour of long gamma-ray bursts with an intrinsic multiwavelength afterglow correlation

    Get PDF
    In this conference proceeding we examine a correlation between the afterglow luminosity (measured at restframe 200 s; logL200s) and average afterglow decay rate (measured from restframe 200 s onwards; α>200s) found in both the optical/UV and X-ray afterglows of long duration Gamma-ray Bursts (GRBs). Examining the X-ray light curves, we find the correlation does not depend on the presence of specific light curve features. We explore how the parameters in the optical/UV and X-ray bands relate to each other and to the prompt emission phase. We also use a Monte Carlo simulation to explore whether these relationships are consistent with predictions of the standard afterglow model. We conclude that the correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining correlations involving α>200s. We therefore briefly discuss alternative more complex models

    Future Boundary Conditions in De Sitter Space

    Get PDF
    We consider asymptotically future de Sitter spacetimes endowed with an eternal observatory. In the conventional descriptions, the conformal metric at the future boundary I^+ is deformed by the flux of gravitational radiation. We however impose an unconventional future "Dirichlet" boundary condition requiring that the conformal metric is flat everywhere except at the conformal point where the observatory arrives at I^+. This boundary condition violates conventional causality, but we argue the causality violations cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk two-point functions obeying this future boundary condition are not realizable as operator correlation functions in any de Sitter invariant vacuum, but they do agree with those obtained by double analytic continuation from anti-de Sitter space.Comment: 16 page

    Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid

    Get PDF
    Background Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC. Materials and Methods Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included. Results Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%). Conclusions There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC

    Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization

    Get PDF
    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures
    corecore