1,399 research outputs found

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics

    An introduction to immunology and immunopathology

    Get PDF
    In basic terms, the immune system has two lines of defense: innate immunity and adaptive immunity. Innate immunity is the first immunological, non-specific (antigen-independent) mechanism for fighting against an intruding pathogen. It is a rapid immune response, occurring within minutes or hours after aggression, that has no immunologic memory. Adaptive immunity, on the other hand, is antigen-dependent and antigen-specific; it has the capacity for memory, which enables the host to mount a more rapid and efficient immune response upon subsequent exposure to the antigen. There is a great deal of synergy between the adaptive immune system and its innate counterpart, and defects in either system can provoke illness or disease, such as autoimmune diseases, immunodeficiency disorders and hypersensitivity reactions. This article provides a practical overview of innate and adaptive immunity, and describes how these host defense mechanisms are involved in both health and illness

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Strained graphene structures: from valleytronics to pressure sensing

    Full text link
    Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    Scoping review on vector-borne diseases in urban areas : transmission dynamics, vectorial capacity and co-infection

    Get PDF
    BACKGROUND: Transmission dynamics, vectorial capacity, and co-infections have substantial impacts on vector-borne diseases (VBDs) affecting urban and suburban populations. Reviewing key factors can provide insight into priority research areas and offer suggestions for potential interventions. MAIN BODY: Through a scoping review, we identify knowledge gaps on transmission dynamics, vectorial capacity, and co-infections regarding VBDs in urban areas. Peer-reviewed and grey literature published between 2000 and 2016 was searched. We screened abstracts and full texts to select studies. Using an extraction grid, we retrieved general data, results, lessons learned and recommendations, future research avenues, and practice implications. We classified studies by VBD and country/continent and identified relevant knowledge gaps. Of 773 articles selected for full-text screening, 50 were included in the review: 23 based on research in the Americas, 15 in Asia, 10 in Africa, and one each in Europe and Australia. The largest body of evidence concerning VBD epidemiology in urban areas concerned dengue and malaria. Other arboviruses covered included chikungunya and West Nile virus, other parasitic diseases such as leishmaniasis and trypanosomiasis, and bacterial rickettsiosis and plague. Most articles retrieved in our review combined transmission dynamics and vectorial capacity; only two combined transmission dynamics and co-infection. The review identified significant knowledge gaps on the role of asymptomatic individuals, the effects of co-infection and other host factors, and the impacts of climatic, environmental, and socioeconomic factors on VBD transmission in urban areas. Limitations included the trade-off from narrowing the search strategy (missing out on classical modelling studies), a lack of studies on co-infections, most studies being only descriptive, and few offering concrete public health recommendations. More research is needed on transmission risk in homes and workplaces, given increasingly dynamic and mobile populations. The lack of studies on co-infection hampers monitoring of infections transmitted by the same vector. CONCLUSIONS: Strengthening VBD surveillance and control, particularly in asymptomatic cases and mobile populations, as well as using early warning tools to predict increasing transmission, were key strategies identified for public health policy and practice
    corecore