Due to its strong bonds graphene can stretch up to 25% of its original size
without breaking. Furthermore, mechanical deformations lead to the generation
of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has
opposite direction for electrons originating from different valleys. We show
that valley-polarized currents can be generated by local straining of
multi-terminal graphene devices. The pseudo-magnetic field created by a
Gaussian-like deformation allows electrons from only one valley to transmit and
a current of electrons from a single valley is generated at the opposite side
of the locally strained region. Furthermore, applying a pressure difference
between the two sides of a graphene membrane causes it to bend/bulge resulting
in a resistance change. We find that the resistance changes linearly with
pressure for bubbles of small radius while the response becomes non-linear for
bubbles that stretch almost to the edges of the sample. This is explained as
due to the strong interference of propagating electronic modes inside the
bubble. Our calculations show that high gauge factors can be obtained in this
way which makes graphene a good candidate for pressure sensing.Comment: to appear in proceedings of the NATO Advanced Research Worksho