12,652 research outputs found

    A nonstationary generalization of the Kerr congruence

    Full text link
    Making use of the Kerr theorem for shear-free null congruences and of Newman's representation for a virtual charge ``moving'' in complex space-time, we obtain an axisymmetric time-dependent generalization of the Kerr congruence, with a singular ring uniformly contracting to a point and expanding then to infinity. Electromagnetic and complex eikonal field distributions are naturally associated with the obtained congruence, with electric charge being necesssarily unit (``elementary''). We conjecture that the corresponding solution to the Einstein-Maxwell equations could describe the process of continious transition of the naked ringlike singularitiy into a rotating black hole and vice versa, under a particular current radius of the singular ring.Comment: 6 pages, twocolum

    Modifying the Casimir force between indium tin oxide film and Au sphere

    Full text link
    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in a very good agreement with computations disregarding the contribution of free carriers. According to the explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.Comment: 30 pages, 19 figures, 1 tabl

    Second and Third Harmonic Generation in Metal-Based Nanostructures

    Full text link
    We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.Comment: 33 pages, including 11 figures and 74 references; corrected affiliations and some typo

    Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using atomic force microscope in a frequency shift technique

    Full text link
    We present measurement results for the gradient of the Casimir force between an Au-coated sphere and an Au-coated plate obtained by means of an atomic force microscope operated in a frequency shift technique. This experiment was performed at a pressure of 3x10^{-8} Torr with hollow glass sphere of 41.3 mcm radius. Special attention is paid to electrostatic calibrations including the problem of electrostatic patches. All calibration parameters are shown to be separation-independent after the corrections for mechanical drift are included. The gradient of the Casimir force was measured in two ways with applied compensating voltage to the plate and with different applied voltages and subsequent subtraction of electric forces. The obtained mean gradients are shown to be in mutual agreement and in agreement with previous experiments performed using a micromachined oscillator. The obtained data are compared with theoretical predictions of the Lifshitz theory including corrections beyond the proximity force approximation. An independent comparison with no fitting parameters demonstrated that the Drude model approach is excluded by the data at a 67% confidence level over the separation region from 235 to 420 nm. The theoretical approach using the generalized plasma-like model is shown to be consistent with the data over the entire measurement range. Corrections due to the nonlinearity of oscillator are calculated and the application region of the linear regime is determined. A conclusion is made that the results of several performed experiments call for a thorough analysis of the basics of the theory of dispersion forces.Comment: 35 pages, 14 figures, 1 table; to appear in Phys. Rev.

    Correlator Bank Detection of GW chirps. False-Alarm Probability, Template Density and Thresholds: Behind and Beyond the Minimal-Match Issue

    Full text link
    The general problem of computing the false-alarm rate vs. detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves, with specific reference to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a gaussian-correlation inequality. The result is used to estimate the optimum template density, yielding the best tradeoff between computational cost and detection efficiency, in terms of undetected potentially observable sources at a prescribed false-alarm level, for the simplest case of Newtonian chirps.Comment: submitted to Phys. Rev.

    Two dimensional modulational instability in photorefractive media

    Full text link
    We study theoretically and experimentally the modulational instability of broad optical beams in photorefractive nonlinear media. We demonstrate the impact of the anisotropy of the nonlinearity on the growth rate of periodic perturbations. Our findings are confirmed by experimental measurements in a strontium barium niobate photorefractive crystal.Comment: 8 figure

    Experimental approaches to the difference in the Casimir force through the varying optical properties of boundary surface

    Full text link
    We propose two novel experiments on the measurement of the Casimir force acting between a gold coated sphere and semiconductor plates with markedly different charge carrier densities. In the first of these experiments a patterned Si plate is used which consists of two sections of different dopant densities and oscillates in the horizontal direction below a sphere. The measurement scheme in this experiment is differential, i.e., allows the direct high-precision measurement of the difference of the Casimir forces between the sphere and sections of the patterned plate or the difference of the equivalent pressures between Au and patterned parallel plates with static and dynamic techniques, respectively. The second experiment proposes to measure the Casimir force between the same sphere and a VO2{}_2 film which undergoes the insulator-metal phase transition with the increase of temperature. We report the present status of the interferometer based variable temperature apparatus developed to perform both experiments and present the first results on the calibration and sensitivity. The magnitudes of the Casimir forces and pressures in the experimental configurations are calculated using different theoretical approaches to the description of optical and conductivity properties of semiconductors at low frequencies proposed in the literature. It is shown that the suggested experiments will aid in the resolution of theoretical problems arising in the application of the Lifshitz theory at nonzero temperature to real materials. They will also open new opportunities in nanotechnology.Comment: 23 pages of the text, 2 tables, and captions of 12 figures (to appear in Phys. Rev. A
    • …
    corecore