We present a new theoretical approach to the study of second and third
harmonic generation from metallic nanostructures and nanocavities filled with a
nonlinear material, in the ultrashort pulse regime. We model the metal as a
two-component medium, using the hydrodynamic model to describe free electrons,
and Lorentz oscillators to account for core electron contributions to both the
linear dielectric constant and to harmonic generation. The active nonlinear
medium that may fill a metallic nanocavity, or be positioned between metallic
layers in a stack, is also modeled using Lorentz oscillators and surface
phenomena due to symmetry breaking are taken into account. We study the effects
of incident TE- and TM-polarized fields and show that a simple re-examination
of the basic equations reveals additional exploitable dynamical features of
nonlinear frequency conversion in plasmonic nanostructures.Comment: 33 pages, including 11 figures and 74 references; corrected
affiliations and some typo