1,706 research outputs found

    Murciélagos de la provincia de Córdoba, Argentina: riqueza y distribución

    Get PDF
    Los objetivos del trabajo fueron identificar vacios en la información distribucional existente referida a los quirópteros de la provincia de Córdoba, para determinar el patrón de riqueza de especies e individualizar las variables que afectan la distribución de cada especie en particular. Se realizaron búsquedas bibliográficas de registros publicados, revisiones de ejemplares depositados en colecciones sistemáticas y relevamientos de localidades puntuales. Con base en los datos distribucionales obtenidos se realizaron modelos predictivos utilizando el programa Maxent. El mapa de riqueza se obtuvo mediante la superposición de 10 mapas individuales de presencia-ausencia, más las celdas de presencia de las cinco especies que no pudieron ser modeladas por presentar menos de cinco registros. Se obtuvieron 204 registros de 15 especies en 191 localidades. La mayor parte de las localidades se concentran en la zona serrana. Las 15 especies registradas fueron citadas para el bosque serrano. Desmodus rotundus, Tadarida brasiliensis y Myotis dinellii presentaron el mayor número de registros. En tres de los 26 departamentos de la provincia de Córdoba (General Roca, Roque Sáenz Peña y Totoral) no se hallaron registros. El rango anual de la temperatura fue la variable más importante para el conjunto de especies, seguida por dos variables topográficas, la pendiente y la elevación. El área serrana de la provincia constituyó la zona de mayor riqueza, con celdas con hasta diez especies.Fil: Castilla, María Cecilia. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Museo de Zoologia; Argentina;Fil: Torres, Ricardo Marcelo. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales; Argentina;Fil: Díaz, María Mónica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Prog.de Investigación de Biodiversidad Argentina; Argentina

    Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL

    Full text link
    [EN] Poly(L-lactic acid)(PLLA)/poly(epsilon-caprolactone)(PCL)/hydroxyapatite(HAp) composites appear as promising materials for healing large bone defects. Highly porous PLLA/PCL scaffolds, 80/20, 20/80 weight ratios, porosity >85%, were prepared by a dual technique of freeze extraction and porogen leaching, with and without HAp. A double pore structure was obtained, with interconnected macroporosity together with interconnected microporosity. Subsequent long-term (78 weeks = 1.5 years) hydrolytic degradation behavior was investigated in terms of the samples' mechanical properties, molecular weight (M-w), mass changes, thermal characteristics, X-ray Diffraction and Thermogravimetric Analysis. Elastic modulus and yield strength of as-synthesized scaffolds were higher for PLLA rich blends and including the inorganic phase does not lead to a mechanical strengthening in these materials. Nevertheless, after 30 weeks of degradation, PLLA rich scaffolds lost more than half of their strength and rigidity. On the contrary, the densification modulus of the PLLA based blends increased with degradation time, whereas PCL-based blends had a relatively constant densification modulus. PCL-based samples showed lower hydrolysis coefficients k than PLLA-based samples, as expected from the higher density of ester bonds in the latter. Interestingly, although including HAp leads to a lower hydrolysis coefficient k in PCL rich samples, it increases k in the PLLA-based sample, which is consistent with the other results obtained.The authors are grateful for the support of the Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, and Consolider Program. J. Rodenas-Rochina acknowledges the funding of his PhD by the Valencian Generality through VALi+d grant.Ródenas Rochina, J.; Vidaurre, A.; Castilla Cortázar, MIC.; Lebourg ., MM. (2015). Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL. Polymer Degradation and Stability. 119:121-131. doi:10.1016/j.polymdegradstab.2015.04.01512113111

    Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids

    Full text link
    [EN] A study was carried out to determine the effects of graphene oxide (GO) filler on the properties of poly(epsilon-caprolactone) (PCL) films. A series of nanocomposites were prepared, incorporating different graphene oxide filler contents (0.1, 0.2, and 0.5 wt%) by the solution mixing method, and an in-depth study was made of the morphological changes, crystallization, infrared absorbance, molecular weight, thermal properties, and biocompatibility as a function of GO content to determine their suitability for use in biomedical applications. The infrared absorbance showed the existence of intermolecular hydrogen bonds between the PCL's carbonyl groups and the GO's hydrogen-donating groups, which is in line with the apparent reduction in molecular weight at higher GO contents, indicated by the results of the gel permeation chromatography (GPC), and the thermal property analysis. Polarized optical microscopy (POM) showed that GO acts as a nucleating point for PCL crystals, increasing crystallinity and crystallization temperature. The biological properties of the composites studied indicate that adding only 0.1 wt% of GO can improve cellular viability and that the composite shows promise for use in biomedical applications.This work was supported by Projects GV/2016/067 of the Generalitat Valenciana and MAT2016-76039-C4-3-R of the Spanish Ministry of Economy and Competitiveness (MINECO). The authors are grateful to M. Monleon-Pradas for his helpful comments and G. Vilarino-Feltrer for his valuable advice on the cell culture experiments. A. Vidaurre would also like to express her gratitude for the support received from CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. SEM, TEM and AFM were conducted by the authors at the Microscopy Service of the Universitat Politecnica de Valencia, whose advice is greatly appreciated.Castilla Cortázar, MIC.; Vidaurre, A.; Marí, B.; Campillo Fernandez, AJ. (2019). Morphology, Crystallinity, and Molecular Weight of Poly(E-caprolactone)/Graphene Oxide Hybrids. Polymers. 11(7):1-19. https://doi.org/10.3390/polym11071099S119117Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15), 3342-3347. doi:10.1016/j.carbon.2006.06.004Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103gKonios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 19(14), 2297-2302. doi:10.1002/adfm.200801776Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653-658. doi:10.1016/j.carbpol.2010.08.038Luong, N. D., Hippi, U., Korhonen, J. T., Soininen, A. J., Ruokolainen, J., Johansson, L.-S., … Seppälä, J. (2011). Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 52(23), 5237-5242. doi:10.1016/j.polymer.2011.09.033Yang, X., Tu, Y., Li, L., Shang, S., & Tao, X. (2010). Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2(6), 1707-1713. doi:10.1021/am100222mSalavagione, H. J., Gómez, M. A., & Martínez, G. (2009). Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules, 42(17), 6331-6334. doi:10.1021/ma900845wXu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337Kulkarni, D. D., Choi, I., Singamaneni, S. S., & Tsukruk, V. V. (2010). Graphene Oxide−Polyelectrolyte Nanomembranes. ACS Nano, 4(8), 4667-4676. doi:10.1021/nn101204dBao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662bTang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., … Lai, G.-Q. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16-27. doi:10.1016/j.carbon.2013.03.050Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007Kim, H., Miura, Y., & Macosko, C. W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 22(11), 3441-3450. doi:10.1021/cm100477vAhmad, H., Fan, M., & Hui, D. (2018). Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, 270-280. doi:10.1016/j.compositesb.2018.02.006Kai, W., Hirota, Y., Hua, L., & Inoue, Y. (2007). Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. Journal of Applied Polymer Science, 107(3), 1395-1400. doi:10.1002/app.27210Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Wan, C., & Chen, B. (2011). Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomedical Materials, 6(5), 055010. doi:10.1088/1748-6041/6/5/055010Song, J., Gao, H., Zhu, G., Cao, X., Shi, X., & Wang, Y. (2015). The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon, 95, 1039-1050. doi:10.1016/j.carbon.2015.09.011Hua, L., Kai, W. H., & Inoue, Y. (2007). Crystallization behavior of poly(ϵ-caprolactone)/graphite oxide composites. Journal of Applied Polymer Science, 106(6), 4225-4232. doi:10.1002/app.26976Sayyar, S., Murray, E., Thompson, B. C., Gambhir, S., Officer, D. L., & Wallace, G. G. (2013). Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296-304. doi:10.1016/j.carbon.2012.09.031Murray, E., Sayyar, S., Thompson, B. C., Gorkin III, R., Officer, D. L., & Wallace, G. G. (2015). A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 5(56), 45284-45290. doi:10.1039/c5ra07210gHassanzadeh, S., Adolfsson, K. H., Wu, D., & Hakkarainen, M. (2015). Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules, 17(1), 256-261. doi:10.1021/acs.biomac.5b01339Kumar, S., Azam, D., Raj, S., Kolanthai, E., Vasu, K. S., Sood, A. K., & Chatterjee, K. (2015). 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4), 732-749. doi:10.1002/jbm.b.33549Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi:10.1016/j.addr.2016.03.007Bianco, A. (2013). Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie International Edition, 52(19), 4986-4997. doi:10.1002/anie.201209099Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., … Huang, Q. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49(3), 986-995. doi:10.1016/j.carbon.2010.11.005Jasim, D. A., Murphy, S., Newman, L., Mironov, A., Prestat, E., McCaffrey, J., … Kostarelos, K. (2016). The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 10(12), 10753-10767. doi:10.1021/acsnano.6b03358Santos, C. M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R. C., & Rodrigues, D. F. (2012). Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23(39), 395101. doi:10.1088/0957-4484/23/39/395101Lim, H. N., Huang, N. M., & Loo, C. H. (2012). Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Journal of Non-Crystalline Solids, 358(3), 525-530. doi:10.1016/j.jnoncrysol.2011.11.007Some, S., Ho, S.-M., Dua, P., Hwang, E., Shin, Y. H., Yoo, H., … Lee, H. (2012). Dual Functions of Highly Potent Graphene Derivative–Poly-l-Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 6(8), 7151-7161. doi:10.1021/nn302215ySydlik, S. A., Jhunjhunwala, S., Webber, M. J., Anderson, D. G., & Langer, R. (2015). In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 9(4), 3866-3874. doi:10.1021/acsnano.5b01290Crescenzi, V., Manzini, G., Calzolari, G., & Borri, C. (1972). Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. European Polymer Journal, 8(3), 449-463. doi:10.1016/0014-3057(72)90109-7Luo, H., Meng, X., Cheng, C., Dong, Z., Zhang, S., & Li, B. (2010). Enzymatic Degradation of Supramolecular Materials Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(ε-caprolactone). The Journal of Physical Chemistry B, 114(13), 4739-4745. doi:10.1021/jp1001836Vidaurre, A., Dueñas, J. M. M., Estellés, J. M., & Cortázar, I. C. (2008). Influence of Enzymatic Degradation on Physical Properties of Poly(ε-caprolactone) Films and Sponges. Macromolecular Symposia, 269(1), 38-46. doi:10.1002/masy.200850907Honma, T., Senda, T., & Inoue, Y. (2003). Thermal properties and crystallization behaviour of blends of poly(?-caprolactone) with chitin and chitosan. Polymer International, 52(12), 1839-1846. doi:10.1002/pi.1380Ramazani, S., & Karimi, M. (2015). Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C, 56, 325-334. doi:10.1016/j.msec.2015.06.045Coleman, M. M., & Zarian, J. (1979). Fourier-transform infrared studies of polymer blends. II. Poly(ε-caprolactone)–poly(vinyl chloride) system. Journal of Polymer Science: Polymer Physics Edition, 17(5), 837-850. doi:10.1002/pol.1979.180170509Huang, Y., Xu, Z., Huang, Y., Ma, D., Yang, J., & Mays, J. W. (2003). Characterization of Poly(ε-Caprolactone) via Size Exclusion Chromatography with Online Right-Angle Laser-Light Scattering and Viscometric Detectors. International Journal of Polymer Analysis and Characterization, 8(6), 383-394. doi:10.1080/714975019Sharaf, M. A., Kloczkowski, A., Sen, T. Z., Jacob, K. I., & Mark, J. E. (2006). Filler-induced deformations of amorphous polyethylene chains. The effects of the deformations on elastomeric properties, and some comparisons with experiments. European Polymer Journal, 42(4), 796-806. doi:10.1016/j.eurpolymj.2005.10.009Nusser, K., Neueder, S., Schneider, G. J., Meyer, M., Pyckhout-Hintzen, W., Willner, L., … Richter, D. (2010). Conformations of Silica−Poly(ethylene−propylene) Nanocomposites. Macromolecules, 43(23), 9837-9847. doi:10.1021/ma101898cVacatello, M. (2002). Chain Dimensions in Filled Polymers:  An Intriguing Problem. Macromolecules, 35(21), 8191-8193. doi:10.1021/ma020416sDuan, T., Lv, Y., Xu, H., Jin, J., & Wang, Z. (2018). Structural Effects of Residual Groups of Graphene Oxide on Poly(ε-Caprolactone)/Graphene Oxide Nanocomposite. Crystals, 8(7), 270. doi:10.3390/cryst8070270Wang, G., Wei, Z., Sang, L., Chen, G., Zhang, W., Dong, X., & Qi, M. (2013). Morphology, crystallization and mechanical properties of poly(ɛ-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science, 31(8), 1148-1160. doi:10.1007/s10118-013-1278-8Balkova, R., Hermanova, S., Voberkova, S., Damborsky, P., Richtera, L., Omelkova, J., & Jancar, J. (2013). Structure and Morphology of Microbial Degraded Poly(ε-caprolactone)/Graphite Oxide Composite. Journal of Polymers and the Environment, 22(2), 190-199. doi:10.1007/s10924-013-0630-yYıldırım, S., Demirtaş, T. T., Dinçer, C. A., Yıldız, N., & Karakeçili, A. (2018). Preparation of polycaprolactone/graphene oxide scaffolds: A green route combining supercritial CO2 technology and porogen leaching. The Journal of Supercritical Fluids, 133, 156-162. doi:10.1016/j.supflu.2017.10.009Peng, H., Han, Y., Liu, T., Tjiu, W. C., & He, C. (2010). Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1-2), 1-7. doi:10.1016/j.tca.2010.01.009Michailidis, M., Verros, G. D., Deliyanni, E. A., Andriotis, E. G., & Achilias, D. S. (2017). An experimental and theoretical study of butyl methacrylatein situradical polymerization kinetics in the presence of graphene oxide nanoadditive. Journal of Polymer Science Part A: Polymer Chemistry, 55(8), 1433-1441. doi:10.1002/pola.28512Tsagkalias, I., Manios, T., & Achilias, D. (2017). Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique. Polymers, 9(9), 432. doi:10.3390/polym9090432Geng, L.-H., Peng, X.-F., Jing, X., Li, L.-W., Huang, A., Xu, B.-P., … Mi, H.-Y. (2016). Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. Journal of Materials Research, 31(3), 348-359. doi:10.1557/jmr.2016.13Song, P., Cao, Z., Cai, Y., Zhao, L., Fang, Z., & Fu, S. (2011). Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52(18), 4001-4010. doi:10.1016/j.polymer.2011.06.045Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X., & Hu, Y. (2011). In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 21(35), 13290. doi:10.1039/c1jm11434dSánchez-Correa, F., Vidaurre-Agut, C., Serrano-Aroca, Á., & Campillo-Fernández, A. J. (2017). Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. Journal of Applied Polymer Science, 135(15), 46158. doi:10.1002/app.46158Liao, K.-H., Lin, Y.-S., Macosko, C. W., & Haynes, C. L. (2011). Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces, 3(7), 2607-2615. doi:10.1021/am200428

    Bat potential species richness in the southern Yungas: contribution to the conservationof species

    Get PDF
    Dentro de las Yungas en Argentina, la porción austral presenta ecotonos con eco-regionesmás áridas como el Chaco, la Puna y el Monte de Sierras y Bolsones. Posee alta diversidad de murciélagos, pero la riqueza disminuye drásticamente encima de los 23°S a 24°S. Este trabajo deriva de un estudio acerca de una colonia de Tadarida brasiliensis ubicada en el Dique Escaba (Tucumán), reconocida como Sitio de Importancia para la Conservación de los Murciélagos (SICOM). El objetivo fue evaluar, desde los factores bioclimáticos, la distribución y riqueza de especies de murciélagos en la porción austral de las Yungas, para contextualizar la importancia de ensambles locales y la utilización de la riqueza potencial como insumo para la designación de Áreas de Importancia para la Conservación de los Murciélagos (AICOMs). A partir de registros de presencia se estimaron distribuciones potenciales mediante el software MaxEnt, para lo quese seleccionaron previamente las variables mediante un Análisis de Componente Principales (pendiente, rango anual de la temperatura y temperatura media del trimestre más frío). El mapa de riqueza de especies se obtuvo sumando los modelos con un buen rendimiento y puntos de presencia de especies no modeladas. Se registraron 27 especies de murciélagos predominantemente insectívoras. La riqueza potencial de especies aumentó asociada a la distribución las Yungas, los cordones montañosos y los ecotonos con las zonas áridas.Los modelos de distribución son buenas herramientas para identificar AICOMs en función de su riqueza potencial, como los alrededores del Dique de Escaba (Tucumán)-Cuesta la Higuerilla (Catamarca) y la cuesta del Totoral y Dique Sumampa (Catamarca), donde se han realizado relevamientos de murciélagos y por eso se han declarado como tales.In Argentina, the Yungas austral portion presents ecotones with arid eco-regions such as Chaco,Puna, and Monte of Mountains and Isolated Valley. It has a high diversity of bats, but the richness decreasesdrastically above 23°S and 24°S. This research derives from a study on a colony ofTadarida brasiliensislocatedin the Escaba Dam (Tucumán), and recognized as an Important Site for Bat Conservation (SICOM in Spanish).The objective was to assess, from bioclimatic factors, the distribution and richness of bat species in thesouthern portion of the Yungas, to contextualize the importance of local assemblages, and the use of potentialrichness as an input for the designation of Important Areas for Bat Conservation (AICOMs in Spanish). Fromthe presence records, potential distributions were estimated using the MaxEnt software, for which the variableswere previously selected through a Principal Component Analysis (slope, annual temperature range, andaverage temperature of the coldest quarter). The species richness map was obtained by adding the signi cantmodels and points of presence of non-modeled species. 27 species of bats predominantly insectivorous wererecorded. Potential species richness increased within the Yungas, across mountain ranges and at the ecotoneswith arid zones. Distribution models are appropriate tools to detect AICOMs based on their potential richness,such as the surroundings of the Escaba Dam (Tucumán) - Cuesta Higuerilla (Catamarca), and the Totoralslope and Sumampa Dam (Catamarca), where bat surveys have been performed and thereafter, they have beendeclared as such.Fil: Castilla, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Catamarca. Universidad Nacional de Catamarca. Centro de Investigaciones y Transferencia de Catamarca; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Conservación de los Murciélagos de Argentina; ArgentinaFil: Cuyckens, Griet An Erica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Conservación de los Murciélagos de Argentina; ArgentinaFil: Zucarelli, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Catamarca. Universidad Nacional de Catamarca. Centro de Investigaciones y Transferencia de Catamarca; ArgentinaFil: Díaz, María Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Investigación de Biodiversidad Argentina; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Conservación de los Murciélagos de Argentina; Argentin

    A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values

    Full text link
    The present paper studies the effect of pH on hydrolytic degradation of Poly(ε-aprolactone) (PCL) Degradation of the films was performed at 37 C in 2.5 M NaOH solution (pH 13) and 2.5 M HCl solution (pH 1). Weight loss, degree of swelling, molecular weight, and calorimetric and mechanical properties were obtained as a function of degradation time. Morphological changes in the samples were carefully studied through electron microscopy. At the start of the process the degradation rate of PCL films at pH 13 was faster than at pH 1. In the latter case, there was an induction period of around 300 h with no changes in weight loss or swelling rate, but there were drastic changes in molecular weight and crystallinity. The changes in some properties throughout the degradation period, such as crystallinity, molecular weight and Young s modulus were lower in degradations at higher pH, highlighting differences in the degradation mechanism of alkaline and acid hydrolysis. Along with visual inspection of the degraded samples, this suggests a surface degradation at pH 13, whereas bulk degradation may occur at pH 1.The authors would like to acknowledge the support of the Spanish Ministry of Science and Education through the MAT2013-46467-C4-1-R Project. A. Vidaurre would also like to acknowledge the support from CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Sailema-Palate, GP.; Vidaurre Garayo, AJ.; Campillo Fernández, AJ.; Castilla Cortázar, MIC. (2016). A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polymer Degradation and Stability. 130:118-125. https://doi.org/10.1016/j.polymdegradstab.2016.06.005S11812513

    Descripción y avances del proyecto de inventario de coronavirus en ensambles de murciélagos en las Yungas Argentinas

    Get PDF
    En julio de 2020, motivados por los efectos provocados por la pandemia de COVID-19 y por la falta de conocimiento acerca de los coronavirus circulantes en Argentina asociados a murciélagos, dimos inicio a un nuevo proyecto de investigación. Respondiendo a la complejidad de la temática, el grupo de trabajo se encuentra integrado por miembros del Programa de Conservación de los Murciélagos de Argentina, investigadores del Consejo Nacional de Investigaciones Científicas y Técnicas, investigadores del Instituto de Virología "Dr. J.M. Vanella" (Facultad de Medicina, Universidad Nacional de Córdoba), investigadores y becarios del Instituto de Ecorregiones Andinas (Universidad Nacional de Jujuy), del Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (Universidad Nacional de Catamarca) y de la Universidad Nacional de Salta. El proyecto reúne especialistas en diferentes disciplinas como etnoconservación, biodiversidad, biogeografía y ecología de hospedadores, ecología de enfermedades zoonóticas y virología. En su primera etapa, el proyecto tiene como objetivos principales: 1) conocer la diversidad natural de coronavirus enzoóticos circulantes en las comunidades silvestres de murciélagos del ecosistema Yungas del noroeste argentino, y 2) caracterizarlos molecular y biológicamente para evaluar su potencial como agentes emergentes de nuevas enfermedades infecciosas para el humano en un contexto de cambio ambiental. Una vez conocida la diversidad natural de coronavirus enzoóticos, nos enfocaremos en la caracterización de conflictos faunasociedad, la asociación entre actividades humanas y exposición a infecciones virales y sobre los ecosistemas.Fil: Castilla, María Cecilia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Centro Regional de Energia y Ambiente Para El Desarrollo Sustentable. - Universidad Nacional de Catamarca. Centro Regional de Energia y Ambiente Para El Desarrollo Sustentable.; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Investigación de Biodiversidad Argentina; Argentina. Programa de Conservación de los Murciélagos de Argentina; ArgentinaFil: Urquizo, José Humberto. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Investigación de Biodiversidad Argentina; Argentina. Programa de Conservación de los Murciélagos de Argentina; Argentina. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Aguilar, Javier. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología Dr. J. M. Vanella; ArgentinaFil: Farías, Adrián Alejandro. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología Dr. J. M. Vanella; ArgentinaFil: Quaglia, Agustín Ignacio Eugenio. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología Dr. J. M. Vanella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Murgia, Agustina. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Docchio, Melisa. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Schaf, Alejandro. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Ferro, Luis Ignacio. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Programa de Investigación de Biodiversidad Argentina; ArgentinaFil: Díaz, Adrian. Universidad Nacional de Córdoba. Facultad de Medicina. Instituto de Virología Dr. J. M. Vanella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Competencias, TIC e Innovación. Nuevos escenarios para nuevos retos

    Get PDF
    [ES] Coordinadores: José Manuel Ríos Ariza y Julio Ruíz PalmeroISBN: 978‐84‐676‐5943‐6Depósito Legal: SE‐3771‐2011Editorial: MADAño de edición: 2011Nº Edición: 1ªLugar edición: Alcalá de Guadaíra (Sevilla)Nº páginas: 140Idioma: EspañolRaposo Rivas, M. (2012). Competencias, TIC e Innovación. Nuevos escenarios para nuevos retos. REDU. Revista de Docencia Universitaria. 10(2):467-470. https://doi.org/10.4995/redu.2012.6118OJS46747010

    Envejecimiento de la población

    Get PDF
    •Actividades básicas de la vida diaria en personas mayores y factores asociados •Asociación entre depresión y posesión de mascotas en personas mayores •Calidad de vida en adultos mayores de Santiago aplicando el instrumento WHOQOL-BREF •Calidad de vida en usuarios con enfermedad de Parkinson, demencia y sus cuidadores, comuna de Vitacura •Caracterización de egresos hospitalarios de adultos mayores en Puerto Natales (2007-2009) •Comportamiento de las patologías incluidas como GES para el adulto mayor atendido en un Cesfam •Contribución de vitaminas y minerales a las ingestas recomendadas diarias en ancianos institucionalizados de Madrid •Estado de salud oral del paciente inscrito en el Programa de Visita Domiciliaria •Evaluación del programa de discapacidad severa en Casablanca con la matriz de marco lógico •Factores asociados a satisfacción vital en una cohorte de adultos mayores de Santiago, Chile •Pauta instrumental para la identificación de riesgos para el adulto mayor autovalente, en su vivienda •Perfil farmacológico del paciente geriátrico institucionalizado y posibles consecuencias en el deterioro cognitivo •Programa de cuidados paliativos y alivio del dolor en Puerto Natales •Rehabilitación mandibular implantoprotésica: efecto en calidad de vida relacionada con salud bucal en adultos mayores •Salud bucodental en adultos mayores autovalentes de la Región de Valparaíso •Transición epidemiológica y el estudio de carga de enfermedad en Brasi

    "Help! I Need Somebody": Music as a Global Resource for Obtaining Wellbeing Goals in Times of Crisis.

    Get PDF
    Music can reduce stress and anxiety, enhance positive mood, and facilitate social bonding. However, little is known about the role of music and related personal or cultural (individualistic vs. collectivistic) variables in maintaining wellbeing during times of stress and social isolation as imposed by the COVID-19 crisis. In an online questionnaire, administered in 11 countries (Argentina, Brazil, China, Colombia, Italy, Mexico, the Netherlands, Norway, Spain, the UK, and USA, N = 5,619), participants rated the relevance of wellbeing goals during the pandemic, and the effectiveness of different activities in obtaining these goals. Music was found to be the most effective activity for three out of five wellbeing goals: enjoyment, venting negative emotions, and self-connection. For diversion, music was equally good as entertainment, while it was second best to create a sense of togetherness, after socialization. This result was evident across different countries and gender, with minor effects of age on specific goals, and a clear effect of the importance of music in people's lives. Cultural effects were generally small and surfaced mainly in the use of music to obtain a sense of togetherness. Interestingly, culture moderated the use of negatively valenced and nostalgic music for those higher in distress

    "Help! I Need Somebody": Music as a Global Resource for Obtaining Wellbeing Goals in Times of Crisis

    Get PDF
    Music can reduce stress and anxiety, enhance positive mood, and facilitate social bonding. However, little is known about the role of music and related personal or cultural (individualistic vs. collectivistic) variables in maintaining wellbeing during times of stress and social isolation as imposed by the COVID-19 crisis. In an online questionnaire, administered in 11 countries (Argentina, Brazil, China, Colombia, Italy, Mexico, the Netherlands, Norway, Spain, the UK, and USA, N = 5,619), participants rated the relevance of wellbeing goals during the pandemic, and the effectiveness of different activities in obtaining these goals. Music was found to be the most effective activity for three out of five wellbeing goals: enjoyment, venting negative emotions, and self-connection. For diversion, music was equally good as entertainment, while it was second best to create a sense of togetherness, after socialization. This result was evident across different countries and gender, with minor effects of age on specific goals, and a clear effect of the importance of music in people's lives. Cultural effects were generally small and surfaced mainly in the use of music to obtain a sense of togetherness. Interestingly, culture moderated the use of negatively valenced and nostalgic music for those higher in distress.Laboratorio para el Estudio de la Experiencia Musica
    corecore