146 research outputs found

    Predicted gamma-ray image of SN 1006 due to inverse Compton emission

    Get PDF
    We propose a method to synthesize the inverse Compton (IC) γ-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC γ-ray images of SN 1006 show morphology in nice agreement with that reported by the High Energy Stereoscopic System (HESS) collaboration. The good correlation found between the observed very high energy γ-ray and X-ray/radio appearance can be considered as evidence of the fact that the γ-ray emission of SN 1006 observed by HESS is leptonic in origin, although a hadronic origin may not be excluded.Fil: Petruk, O.. Institute for Applied Problems in Mechanics and Mathematics; UcraniaFil: Bocchino, F.. Istituto Nazionale Di Astrofísica. Osservatorio Astronómico Di Palermo; ItaliaFil: Miceli, M.. Istituto Nazionale Di Astrofísica. Osservatorio Astronómico Di Palermo; ItaliaFil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Orlando, S.. Istituto Nazionale Di Astrofísica. Osservatorio Astronómico Di Palermo; ItaliaFil: Iakubovskyi, D.. Bogolyubov Institute for Theoretical Physics; UcraniaFil: Telezhinsky, I.. Kiev National Taras Shevchenko University; Ucrani

    Neutral pion emission from accelerated protons in the supernova remnant W44

    Full text link
    We present the AGILE gamma-ray observations in the energy range 50 MeV - 10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [SII] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that: (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; (3) the hadron energy spectrum is well described by a power-law (with index s = 3.0 \pm 0.1) and a low-energy cut-off at Ec = 6 \pm 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.Comment: accepted for publication on ApJ

    Aspect angle for interstellar magnetic field in SN 1006

    Get PDF
    A number of important processes taking place around strong shocks in supernova remnants (SNRs) depend on the shock obliquity. The measured synchrotron flux is a function of the aspect angle between interstellar magnetic field (ISMF) and the line of sight. Thus a model of non-thermal emission from SNRs should account for the orientation of the ambient magnetic field. We develop a new method for the estimation of the aspect angle, based on the comparison between observed and synthesized radio maps of SNRs, making different assumptions about the dependence of electron injection efficiency on the shock obliquity. The method uses the azimuthal profile of radio surface brightness as a probe for orientation of ambient magnetic field because it is almost insensitive to the downstream distribution of magnetic field and emitting electrons. We apply our method to a new radio image of SN 1006 produced on the basis of archival VLA and Parkes data. The image recovers emission from all spatial structures with angular scales from few arcseconds to 15 arcmin. We explore different models of injection efficiency and find the following best-fitting values for the aspect angle of SN 1006: phi=70 +/- 4.2 deg if the injection is isotropic, phi=64 +/- 2.8 deg for quasi-perpendicular injection (SNR has an equatorial belt in both cases) and phi=11 +/- 0.8 deg for quasi-parallel injection (polar-cap model of SNR). In the last case, SN 1006 is expected to have a centrally-peaked morphology contrary to what is observed. Therefore, our analysis provides some indication against the quasi-parallel injection model.Comment: Accepted for publication in MNRA

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Multicriteria Optimization Model to Generate on-DEM Optimal Channel Networks

    Get PDF
    The theory of optimal channel networks (OCNs) explains the existence of self‐similarities in river networks by multiple optimality principles, namely, (i) the minimum energy expenditure in any link, (ii) the equal energy expenditure per unit area of channel anywhere, and (iii) the minimum total energy expenditure (TEE). These principles have been used to generate OCNs from 2‐D networks. The existing notion of OCN considers the concavity of river longitudinal profiles as a priori condition. Attempts to generate OCNs starting from a random 3‐D digital elevation model (DEM) and minimizing solely TEE have failed to reproduce concave profiles. Yet alternative approaches can be devised from the three optimality principles, for instance, focusing on the local energy expenditure (LEE). In this paper, we propose a Multiobjective modeling framework for Riverscape Exploration (MoRE) via simultaneous optimization of multiple OCN criteria. MoRE adopts a multiobjective evolutionary algorithm and radial basis functions to efficiently guide DEM elevation variations required to shape 3‐D OCNs. By minimizing both TEE and the variance in LEE, MoRE successfully reproduces realistic on‐DEM, OCN‐based riverscapes, for the first time. Simulated networks possess scaling laws of upstream area and length and river longitudinal profile resembling those of real river networks. The profile concavity of generated on‐DEM OCNs emerges as a consequence of the minimization of TEE constrained to the equalization of LEE. Minimizing TEE under this condition generates networks that possess specific patterns of LEE, where the scaling of slope with basin area resembles the patterns observed in real river networks

    Serum thymidine kinase activity in patients with HR-positive/HER2-negative advanced breast cancer treated with ribociclib plus letrozole: Results from the prospective BioItaLEE trial

    Get PDF
    Background: Thymidine kinase 1 (TK1) is an enzyme downstream of the CDK4/6 pathway, with a critical role in DNA synthesis; serum TK1 activity (sTKa) is a novel liquid biopsy biomarker of tumour cell proliferation. Methods: The phase IIIb, BioItaLEE trial (NCT03439046) collected sera from postmenopausal patients with hormone receptor–positive (HR+), HER2-negative (HER2–) advanced breast cancer (ABC) treated with first-line ribociclib plus letrozole at baseline, day 15 of cycle 1 (C1D15), day 1 of cycle 2 (C2D1), and at first imaging. Associations between sTKa assessed at different time points or sTKa dynamic patterns, and progression-free survival (PFS) were evaluated using multivariate Cox models. Results: Overall, 287 patients were enroled. Median follow-up was 26.9 months. High sTKa (>median) at baseline was associated with higher risk of progression (hazard ratio [HR], 2.21; 95% confidence interval [95% CI], 1.45, 3.37; P = 0.0002); similar results were observed for patients with high sTKa levels at C1D15 and C2D1. Early sTKa dynamic patterns were strongly predictive of PFS. The pattern with high sTKa levels at C2D1 following initial decrease at C1D15 was associated with higher risk of progression versus the pattern with low sTKa levels at both time points (HR, 2.89; 95% CI, 1.57, 5.31; P = 0.0006), while the pattern with high sTKa levels at C1D15 was associated with the shortest PFS (HR, 5.65; CI: 2.84, 11.2; P < 0.0001). Baseline and dynamic sTKa changes provided independent information. Conclusions: sTKa appears to be a new promising prognostic and pharmacodynamic biomarker in patients with HR+/HER2– ABC treated with ribociclib plus letrozole as first-line therapy

    Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006

    Get PDF
    Efficient particle acceleration can modify the structure of supernova remnants. In this context we present the results of the combined analysis of the XMM-Newton EPIC archive observations of SN 1006. We aim at describing the spatial distribution of the physical and chemical properties of the X-ray emitting plasma at the shock front. We investigate the contribution of thermal and non-thermal emission to the X-ray spectrum at the rim of the remnant to study how the acceleration processes affect the X-ray emitting plasma. We perform a spatially resolved spectral analysis on a set of regions covering the whole rim of the shell and we exploit the results of the spectral analysis to produce a count-rate image of the "pure" thermal emission of SN 1006 in the 0.5-0.8 keV energy band (subtracting the non-thermal contribution). This image significantly differs from the total image in the same band, specially near the bright limbs. We find that thermal X-ray emission can be associated with the ejecta and we study the azimuthal variation of their physical and chemical properties finding anisotropies in temperature and chemical composition. Thanks to our thermal image we trace the position of the contact discontinuity over the whole shell and we compare it with that expected from 3-D MHD models of SNRs with unmodified shock. We conclude that the shock is modified everywhere in the rim and that the aspect angle between the interstellar magnetic field and the line of sight is significantly lower than 90 degreesComment: Accepted for publication in A&A. For the version of the paper with high resolution images, please see http://www.astropa.unipa.it/Library/preprint.htm

    MHD models of Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical modeling of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.Comment: 18 pages, 5 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201
    corecore