7 research outputs found

    The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function.

    Get PDF
    Funder: Programa de Desarrollo de las Ciencias BasicasFunder: Institució Catalana de Recerca i Estudis AvancatsFunder: Sistema Nacional de Investigadores, Agencia Nacional de Investigación e Innovación, UruguayFunder: Government of SpainWe present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian Consensus Conference on Pain in Neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    A relaxed specificity in interchain disulfide bond formation characterizes the assembly of a low-molecular-weight glutenin bubunit in the endoplasmic reticulum

    Get PDF
    Wheat (Triticum spp.) grains contain large protein polymers constituted by two main classes of polypeptides: the high-molecular-weight glutenin subunits and the low-molecular-weight glutenin subunits (LMW-GS). These polymers are among the largest protein molecules known in nature and are the main determinants of the superior technological properties of wheat flours. However, little is known about the mechanisms controlling the assembly of the different subunits and the way they are arranged in the final polymer. Here, we have addressed these issues by analyzing the formation of interchain disulfide bonds between identical and different LMW-GS and by studying the assembly of mutants lacking individual intrachain disulfides. Our results indicate that individual cysteine residues that remain available for disulfide bond formation in the folded monomer can form interchain disulfide bonds with a variety of different cysteine residues present in a companion subunit. These results imply that the coordinated expression of many different LMW-GS in wheat endosperm cells can potentially lead to the formation of a large set of distinct polymeric structures, in which subunits can be arranged in different configurations. In addition, we show that not all intrachain disulfide bonds are necessary for the generation of an assembly-competent structure and that the retention of a LMW-GS in the early secretory pathway is not dependent on polymer formation

    Abstracts from the 23rd Italian congress of Cystic Fibrosis and the 13th National congress of Cystic Fibrosis Italian Society

    No full text
    Cystic Fibrosis (CF) occurs most frequently in caucasian populations. Although less common, this disorder have been reported in all the ethnicities. Currently, there are more than 2000 described sequence variations in CFTR gene, uniformly distributed and including variants pathogenic and benign (CFTR1:www.genet.sickkids.on.ca/). To date,only a subset have been firmily established as variants annotated as disease-causing (CFTR2: www.cftr2.org). The spectrum and the frequency of individual CFTR variants, however, vary among specific ethnic groups and geographic areas. Genetic screening for CF with standard panels of CFTR mutations is widely used for the diagnosis of CF in newborns and symptomatic patients, and to diagnose CF carrier status. These screening panels have an high diagnostic sensitivity (around 85%) for CFTR mutations in caucasians populations but very low for non caucasians. Developed in the last decade, Next-Generation Sequencing (NGS) has been the last breakthrough technology in genetic studies with a substantial reduction in cost per sequenced base and a considerable enhancement of the sequence generation capabilities. Extended CFTR gene sequencing in NGS includes all the coding regions, the splicing sites and their flankig intronic regions, deep intronic regions where are localized known mutations,the promoter and the 5'-3' UTR regions. NGS allows the analysis of many samples concurrently in a shorter period of time compared to Sanger method . Moreover, NGS platforms are able to identify CFTR copy number variation (CNVs), not detected by Sanger sequencing. This technology has provided new and reliable approaches to molecular diagnosis of CF and CFTR-Related Disorders. It also allows to improve the diagnostic sensitivity of newborn and carrier screeningmolecular tests. In fact, bioinformatics tools suitable for all the NGS platforms can filter data generated from the gene sequencing, and analyze only mutations with well-established disease liability. This approach allows the development of targeted mutations panels with a higher number of frequent CF mutations for the target populationcompared to the standard panels and a consequent enhancement of the diagnostic sensitivity. Moreover, in the emerging challenge of diagnosing CF in non caucasians patients, the possibility of customize a NGS targeted mutations panel should increase the diagnostic sensitivity when the target population has different ethnicities

    Abstracts from the 23rd Italian congress of Cystic Fibrosis and the 13th National congress of Cystic Fibrosis Italian Society

    No full text
    corecore