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1, Núria VillegasID

1, Isabelle Brun-HeathID
1,

Carlos GonzálezID
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Abstract

We present a comprehensive, experimental and theoretical study of the impact of 5-hydro-

xymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and

NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate

an epigenetic variant with structural and physical properties similar to those of 5-methylcyto-

sine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxy-

methylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer

circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule

out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical proper-

ties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the

chromatin structure induced by differences in physical properties between d(mCpG) and d

(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains

(MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d

(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the

d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methyla-

tion are the result of the combination of stiffness-related chromatin reorganization and MBD

binding, those associated to 5-hydroxylation of methylcytosine could be explained by a

change in the balance of repression/activation pathways related to differential MBD binding.

Author summary

In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expres-

sion and regulation, and protein recognition. In this work we investigate the physical

implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility
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differences with methylated and unmodified cytosine using molecular dynamics, biophys-

ical experiments and NMR spectroscopy.
In particular the effect of hydroxyl group on free energy of nucleosome and Methyl

binding Protein (MBD) binding, comparing in silico and experimental data to shed light

on the effect of the reduced flexibility and the direct protein-DNA recognition.

1. Introduction

Genomic expression is a finely controlled process regulated by a myriad of external and inter-

nal effectors which ensure that genetic information is expressed whenever and wherever

required in the interest of the entire organism [1]. External effectors are proteins or RNAs,

which can regulate directly DNA transcription activation or repression. Internal effectors are

chromatin chemical modifications (epigenetic changes) [2] that can affect DNA expression by

recruiting activator or repressor proteins; or by controlling the accessibility of the transcrip-

tional machinery to the target DNA sequences.

In developed organisms, such as mammals, DNA epigenetic changes are highly prevalent

and most CpG steps (except for those in CpG islands) are methylated at the 5-position of the

pyrimidine ring [3,4]. The presence of 5-methylcytosine (mC) has been traditionally related to

gene inactivation,[5–8] but analysis of methylation changes in Leukaemia strongly suggests

that the real connection between methylation and gene expression is probably more complex

and differs in each individual gene [9]. It is known that methylated DNA (met-DNA) recruits

proteins containing methylated-DNA binding domains (MBD; [10]) triggering protein-spe-

cific responses. Furthermore, it has been described that DNA methylation modulates DNA

accessibility, [11] mainly by making the DNA stiffer and less prone to wrap around nucleo-

somes [12,13], leading to nucleosome shifts and accordingly to changes in the pattern of acces-

sible and hidden sequences.

The portfolio of DNA epigenetic modifications in mammals has been recently expanded

with another covalently modified cytosine, the 5-hydroxymethylcytosine (hmC) [14,15]. This

modified nucleobase was initially considered just an intermediate step in the de-methylation

pathway (5-Methyl➔ hydroxymethyl➔ formyl➔ carboxyl➔ CO2) [16,17], but different stud-

ies on the expression of the protein catalyzing mC➔hmC conversion (Tet: Ten-Eleven translo-

cation family of dioxygenases)[18–22] and genome wide analysis have shown a crucial role of

hmC in the transcription [23–25], especially in processes related to tissue differentiation [26–

28].

In the past years approaches to detect and differentiate mC and hmC in vitro and in vivo

along the genome at base-resolution have been developed [29,30].

Interestingly, for still unknown reasons, hmC is prevalent in specific brain cell types, as well

as in embryonic stem cells (ESCs), with consequential reduction during differentiation [31–

35]. When present, hmC signals are not randomly distributed, but appear located near tran-

scriptional starting sites and promoters, as well as in certain CpG islands [24,36–38], suggest-

ing a specific role of this epigenetic modification in gene activity. The presence of hmC seems

to correlate with a reversion of mC effects [39], but the molecular mechanisms connecting the

presence of the hmC with gene activity are unclear. Two main possibilities emerge: i) a change

in the DNA physical properties reverting to the unmethylated situation that leads to nucleo-

some repositioning; ii) a direct protein-mediated mechanism. However, there is still a contro-

versy on the physical/conformational effect of mC and hmC on DNA flexibility and its ability

to wrap around histones to form nucleosomes [12,40–45]. Using a variety of experimental and
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theoretical methods, here we explored this issue to have a complete view on all the sequence-

dependent effects within the nearest-neighbor framework. We found that changes in flexibility

induced by cytosine modifications strongly depend on the sequence of the tetrameric environ-

ments, considering CpG as central step. In general, we discovered that physical properties of

hmC are significantly different to those of unmodified cytosine, but similar to those of mC.

This suggests that the reversion of methylation effects in gene expression by TET action cannot

be explained simply by changes in physical properties of DNA involving nucleosome remodel-

ling. No specific hmC-binding proteins have been described, to our knowledge, but the analy-

sis of known MBDs [16,46] show a surprisingly wide range of substrate specificity. Our

calculations suggest MBD with dual activation/repression activity shows nearly equal affinity

for mC and hmC, while those with exclusively inactivating role have a large preference for the

methylated form. This can be the ultimate reason of the differential effect of mC and hmC in

gene expression.

2. Results and discussion

2.1 The effect of 5-hydroxymethylcitosine on the stability of DNA

We first analysed the changes in stability due to methylation and hydroxymethylation of the

model sequence d(CGAC�GTCG)�d(CGAC�GTCG). UV-Melting experiments demonstrated

(see Materials and Methods and Table A in S1 File) a slight increase in the melting temperature

of hmC with respect to unmodified DNA (2–3 degrees), and a slight decrease (around 1

degree) from mC-DNA. This different becomes significative at higher concentrations while

still inside the experimental error at lower concentrations, suggesting a mild effect in stability.

Processing of melting profiles confirms the small impact of C➔mC➔hmC substitutions in

duplex stability, and the predictable enthalpy/entropy compensation, with the hydrophobicity

term favouring (as expected, [47]) the stability of mC (mC >hmC>C, see Table B in S1 File).

Processing of melting profiles confirms the small impact of C➔mC➔hmC substitutions in

duplex stability, and the predictable enthalpy/entropy compensation, with the hydrophobicity

term favouring (as expected, [47]) the stability of mC (mC >hmC>C, see Table C in S1 File).

2.2 The effect of 5-hydroxymethylcitosine on dsDNA structure. NMR

studies

We studied the impact of hmC at d(CpG) steps on the conformation of DNA by NMR experi-

ments using two model sequences with a central CpG step: d(CGTC�GACG)�d(CGTC�GACG)

(central base pair very flexible, [48]) and d(CGCGAC�GTCGCG)�d(CGCGAC�GTCGCG)

(central base pair very stiff, [48]). NMR data was collected for C� = C, hmC and C� = C, mC

and hmC, respectively; allowing us to obtain, for the first time direct experimental information

on the structure of DNA related to epigenetic changes C ➔mC ➔hmC placed on both

strands of the duplex (i.e., d(C�pG)�d(C�pG)) (see Materials and Methods and S1 File). Sequen-

tial assignments of exchangeable and non-exchangeable proton found small, but significant

changes in chemical shifts of the groups involved in H-bonding at the substitution site (chemi-

cal shifts at C� amino move from 8.21 ppm (C� = C) to 8.41 ppm (C� = mC) and 8.54 ppm (C�

= hmC)) (data in Tables C-H and Figs A-D in S1 File). The NMR signal of–OH in the hmC

duplex could not be detected, most probably due to rapid exchange with the solvent, suggesting

that OH-N6 hydrogen bond is not highly populated. Angular and distance constraints derived

from J-couplings and NOE cross-peaks, respectively, allowed us to determine the solution struc-

tures (see Materials and Methods and S1 File) for the mC and hmC containing duplexes in the

two distinct tetrameric environments. In all cases structures agree very well with a general B-
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like duplex (Fig 1). The changes induced by the presence of mC or hmC are small, in general

less important than those induced by tetramer-dependency (TC�GA vs AC�GT) and a detailed

analysis at the central base pair step (d(CpG); see Table 1) demonstrates that at the very local

level the structural impact of epigenetic changes in DNA are modest.

2.3 The effect of 5-hydroxymethylcytosine on the physical properties of

DNA

Unbiased MD ensembles of d(CGTC�GACG)�d(CGTC�GACG) and d(CGAC�GTCG)�d

(CGAC�GTCG) agrees very well with the MD-NMR-biased ones (RMSd deviation around

0.7–1.1 Å from the average NMR structure for the central tetramers; see detailed analysis at the

Fig 1. Average NMR structure of the sequences d(CGTC�GACG)�d(CGTC�GACG) and d(CGCGAC�GTCGCG)�d

(CGCGAC�GTCGCG) (C� being C, mC or hmC respectively) for the central octamer (A) and the central tetramer (B).

https://doi.org/10.1371/journal.pcbi.1009547.g001

Table 1. Average parameters (in Å and Degrees) with standard deviation for the central step in the NMR structure

of the sequences d(CGTC�GACG)�d(CGTC�GACG) and d(CGCGAC�GTCGCG)�d(CGCGAC�GTCGCG) (C�

being C, mC or hmC).

AC�GT

Base pair parameter NMR hmCpG NMR mCpG NMR CpG

Shift (Å) -0.13 ± 0.79 -0.16 ± 0.23 0.11 ± 0.25

Slide (Å) -0.33 ± 0.20 -0.33 ± 0.21 -0.09 ± 0.18

Rise (Å) 3.25 ± 0.21 3.35 ± 0.01 3.20 ± 0.17

Tilt (degrees) 1.0 ± 2.0 -0.35 ± 0.73 2.8 ± 2.1

Roll (degrees) 11.0 ± 3.5 11.85 ± 4.1 8.7 ± 3.6

Twist (degrees) 34.9 ± 3.5 37.9 ± 2.8 37.2 ± 1.9

TC�GA

Base pair parameter NMR hmCpG NMR CpG

Shift (Å) 0.37 ± 0.73 0.37 ± 0.28

Slide (Å) -0.40 ± 0.32 0.79 ± 0.25

Rise (Å) 3.08 ± 0.21 3.02 ± 0.22

Tilt (degrees) 1.4 ± 3.4 2.8 ±2.65

Roll (degrees) 10.5 ± 4.3 9.5 ± 3.0

Twist (degrees) 33.1 ± 2.9 28.0 ± 2.6

https://doi.org/10.1371/journal.pcbi.1009547.t001
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C�pG step in Fig E in S1 File), supporting the quality of parmbsc1 simulations [49]. This allows

us to analyse the impact of C➔mC➔hmC substitutions in a much wider range of sequence

environments and in the absence of the artificial restraints used in NMR refinements. Such

restrains which are nearly-harmonic bias the intrinsic deformability of the DNA hindering the

possibility to sample for example, the bimodality at the central CpG step, a well- known poly-

morphism found both in MD simulation and in high-resolution experimental structures

[48,50–52]. With this aim we collected 0.5 μs trajectories (see Materials and Methods) of 10

dodecamers containing all the unique tetramer environments of the d(C�pG) step (for C� = C,

mC or hmC). Additional trajectories were collected for d(C�pG)6�d(C�pG)6, a poly(CpG)

dodecamer mimicking CpG islands, repetitive polymers with unique biological importance. In

summary, we collected 16.5 μs of unbiased trajectories of dodecamers containing C�pG tetra-

mers (0.5 μs x 33 structures), which confirm that the introduction of epigenetic variants of

cytosine leads to only mild structural alterations in the duplex, and the differences between

mC- and hmC-DNAs being very small (Table I in S1 File). Modifications induced by epige-

netic changes are typically smaller than tetramer-induced changes, but there is a clear general

tendency for a reduction in twist and an increase in roll when C is substituted by mC or hmC

(Fig 2).

In the case of twist, the epigenetic changes induce (in general) a displacement of the

bimodal CpG distribution towards low twist values (Fig 3), while in the case of roll, it results in

the movement of the normal distribution towards higher values, probably related to the steric

hindrance of the cytosine 5-substituent (Fig 3). Note that it is difficult, due to the refinement

procedures, to detect changes in twist bimodality in NMR structures, but the high twist to low

Fig 2. Average value with relative standard deviation for the base pair parameters roll (left panel) and twist (right) for

C�G step in the different tetramer environment. Being C� normal cytosine (blue dots), methylated cytosine (green

dots) and hydroxymethylated cytosine (red dots).

https://doi.org/10.1371/journal.pcbi.1009547.g002
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twist transition detected by MD in flexible sequences has been already detected in a high-reso-

lution crystal structure (PDB ID 4GLH, 4HLI and 4GLC) (see Fig F in S1 File), supporting the

validity of our theoretical findings. Finally, and very interestingly, we found that some tetra-

mers show quite unique distributions (for example the high twist of AC�GT) and that polymer

effects are not negligible as shown in the d(CGCG)�d(CGCG) tetramer behaves differently

when embedded in the reference dodecamer or in a poly(CpG).

Fig 3. Roll and Twist distributions. Roll (left panel) and twist (right panel) distributions for each C�pG step, in a

different tetramer environment, being C� normal (A), methylated (B) and hydroxymethylated (C). Dashed line for

C�pG step in a poly(CpG) sequence.

https://doi.org/10.1371/journal.pcbi.1009547.g003
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Stiffness analysis (see Materials and Methods) [53,54] illustrates the impact of epigenetic

changes on the elastic deformability of DNA. In general, cytosine methylation increases the

stiffness of CpG steps, mainly due to the restriction of roll flexibility. Such a stiffness increase

is even more evident for hmC (see diagonal terms of the stiffness matrices in Table 2 and

Table J in S1 File, and data in S3 File for the entire stiffness matrices), due the narrowing of the

roll distribution (see Fig 3), probably related to the formation of transient hydrogen bond

interactions involving the hydroxyl group of hmC (see Fig G in S1 File as examples). The for-

mation of those hydrogen bonds covers only a very small part of the trajectory, consequently

they cannot justify completely the stiffness due to the hydroxyl group but combined with the

loss of conformational sub-states these results show a narrower sampling of the conformations

and restrictions for some movements due to the hydroxyl group interactions. It is worth not-

ing, again, that these general trends are not universal and significant deviations are evident for

certain tetramers (for example ACGT and TCGA). Again poly(CpG) has a rather differential

behaviour, as for this repetitive sequence methylation increases rather than decrease flexibility

(in agreement with previous findings by Zacharias and coworkers [44]), which combined with

Table 2. A) Diagonal stiffness constants for rotational movements in kcal/mol deg2 for the central C�pG step (C� = C, mC and hmC) in the different tetrameric

environments. B) Cubed root of the product of the diagonal stiffness constants for rotational movements in kcal/mol deg2. Full dataset of the stiffness matrices in

S2 File.

A

Kb
tw-tw Kb

roll-roll Kb
tilt-tilt

CpG mCpG hmCpG CpG mCpG hmCpG CpG mCpG hmCpG

ACGA 0.025 0.024 0.025 0.016 0.018 0.025 0.033 0.031 0.037

ACGC 0.023 0.024 0.026 0.014 0.015 0.023 0.034 0.031 0.039

ACGG 0.025 0.024 0.026 0.015 0.016 0.027 0.033 0.031 0.039

ACGT 0.029 0.034 0.027 0.015 0.021 0.016 0.036 0.038 0.035

CCGA 0.027 0.027 0.028 0.019 0.022 0.028 0.033 0.032 0.038

CCGC 0.025 0.026 0.026 0.018 0.021 0.027 0.033 0.032 0.041

CCGG 0.027 0.027 0.026 0.018 0.022 0.028 0.031 0.031 0.039

GCGA 0.027 0.028 0.029 0.018 0.022 0.029 0.034 0.033 0.039

GCGC 0.024 0.026 0.024 0.016 0.018 0.025 0.034 0.032 0.041

TCGA 0.025 0.027 0.025 0.020 0.025 0.024 0.032 0.033 0.032

average 0.026 0.027 0.026 0.017 0.020 0.025 0.033 0.032 0.038

Poly(CG) 0.022 0.024 0.027 0.018 0.015 0.018 0.033 0.030 0.030

B

Ktot
rot

CpG mCpG hmCpG

ACGA 0.024 0.024 0.028

ACGC 0.022 0.022 0.029

ACGG 0.023 0.023 0.030

ACGT 0.025 0.030 0.025

CCGA 0.026 0.027 0.031

CCGC 0.025 0.026 0.031

CCGG 0.025 0.026 0.031

GCGA 0.025 0.027 0.032

GCGC 0.024 0.025 0.029

TCGA 0.025 0.028 0.027

average 0.024 0.026 0.029

Poly(CG) 0.024 0.022 0.024

https://doi.org/10.1371/journal.pcbi.1009547.t002
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results above suggest that epigenetic changes can affect physical properties of CpG islands in a

quite different way than in the rest of the DNA.

We also investigated the stiffness at the base pair level and calculated the 6x6 stiffness matri-

ces for the intra-base pair movements (translational: Shear, Stretch, Stagger, and rotational:

Buckle, Propeller, Opening) (data in S3 File). We found that the translational movements have

in general higher force constants for normal cytosine (C>hmC>mC), while the rotational

parameters are stiffer when hmC is present and the unmodified cytosine is the most flexible.

Also in this case the sequence-dependent variability looks more important that the effect of the

epigenetic change.

We calculated the correlations between the neighboring base pair (j and j+1), starting from

the central C�G step. As previously reported [55] for unmodified CpG steps we found correla-

tions of shift-shift; twist-twist and tilt-tilt base pair parameters between neighboring steps.

However, this correlation going from the base pair C�G to the neighboring step decreases (see

Fig H in S1 File) and does not go further than the j+1. The epigenetic modifications clearly

diminish the neighboring correlations (Fig 3), as they simplify the conformational landscape

by reducing the diversity of possible sub-states of several degrees of freedom.

To validate our claim that epigenetic variants tend to increase the DNA stiffness (in the

majority of the sequence contexts), we carried out DNA circularization experiments using the

double stranded 21mers (d(GAAAAAACGGGC�GAAAAACGG)� d(TCCCGTTTTTC�GC

CCGTTTTT)) with a central C�pG dinucleotide (C� = C, mC, hmC, respectively) as described

in Perez et al [12]. Under favorable ligation conditions (see Materials and Methods), the multi-

mers form circles that are as short as allowed by the flexibility of the DNA. Results shown in

Fig 4 (and Fig I in S1 File) clearly demonstrate that, as suggested by our MD simulations

(Table 2), epigenetic variants increase (in most sequence context) the stiffness of DNA, follow-

ing the order: hmC>mC>C. In summary, the reversion of methylation signature by hydroxy-

methylation cannot be explained as a recovery of the properties of the unmethylated DNA.

Fig 4. (A-C) 2D polyacrylamide native gels showing different migrations of linear and circular DNA species oligomers

of 21 bp, respectively for (A) Cytosine (C), (B) Methylcytosine (mC) and (C) Hydroxymethylcytosine (hmC)

containing fragments. Linear DNA molecules are positioned on the lower diagonal, and circular DNA molecules are

positioned on the upper diagonal. (D) The circularization efficiency expressed as the ratio between Circular and Linear

molecules of the same size (base pairs, bp).

https://doi.org/10.1371/journal.pcbi.1009547.g004
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Our experimental and theoretical results can be compared with previous data from the liter-

ature. Thus, the impact of methylation reducing DNA flexibility found here agrees well with a

myriad of experiments from our own group and others [12,40,41,43–45], but disagrees with

the results in a recent study by Zaichuk and Marko [42] that point in the opposite direction,

probably due to a different experimental set-up where no full control of the placement and

level of methylation exists. The impact of hydroxymethylation is less clear, and our results dis-

agree with previous claims by Ngo et al. [41] derived from circularization experiments using

short oligomers. We can speculate that the differences might arise from the use in those experi-

ments [41] of a short oligomer that cannot circularize by harmonic deformations (condition in

which stiffness analysis can be applied), and possible phasing problems which can be prevalent

when experiments are done using only a single duplex length.

The reduction of flexibility introduced by epigenetic variants of cytosine is expected to

increase the energetic cost of wrapping the DNA around the nucleosome core [13], leading to

a decrease in nucleosome affinity. To confirm this hypothesis, we compute deformation ener-

gies (see Materials and Methods) associated to nucleosome wrapping for DNA containing

unmodified CpG, mCpG and hmCpG steps. To include phasing issues into consideration we

explored two scenarios: i) 4 epigenetic changes (2 d(CpG) steps modified) “in-phase”, i.e., each

modification separated by 11 bases (the periodicity of DNA in a nucleosome [56]) and ii) 4 epi-

genetic changes in “anti-phase”, i.e. each modification separated by 5 bps. Results in Fig 5A

demonstrate that epigenetic variations increase the energy cost required for nucleosome wrap-

ping, both when introduced in “in-phase” and “anti-phase” (Fig J in S1 File), suggesting that

change in flexibility rather than in the intrinsic curvature (roll and tilt) are the main responsi-

ble of the epigenetic-induced difference in nucleosome affinity. To validate these theoretical

findings, we performed nucleosome reconstitution experiments (see Materials and Methods,

Supporting Methods in S1 File) [57] using both “in-phase” and “anti-phase” arrangements

(the same sequences as before). The results obtained (Fig 5B), characterized by high standard

deviation but statistically significant (pvalue of 0.006), confirm that the C➔mC➔hmC substi-

tution leads to a reduction in the efficiency of nucleosome reconstitution, the difference

Fig 5. A) Deformation energy variation cost required for nucleosome wrapping, difference between the energy cost of

the methylated (mC) and hydroxymethylated (hmC) DNA respect to the control (unmodified cytosine). At the top a

schematic view of the positioning of the modifications (red dots), respectively 5 and 11 base pairs apart on the DNA

wrapped around the histones (in yellow). B) Experimental affinity ratio, with standard deviation, between the

methylated (mC) and hydroxymethylated (hmC) DNA respect to the control (unmodified cytosine) calculated using

nucleosome reconstitution.

https://doi.org/10.1371/journal.pcbi.1009547.g005
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between methylated and hydroxymethylated DNAs being small. Interestingly, experimental

changes in nucleosome reconstitution induced by epigenetic alterations “in-phase” are not

dramatically different than those found in “anti-phase”, where the effect of changes in intrinsic

curvature should cancel, supporting the claims that changes in flexibility are the main respon-

sible for epigenetic-related changes in nucleosome affinity. To our knowledge, this is the first

time that hmC impact on nucleosome binding has been analyzed, but our findings on methyl-

ation fully agree with previous experimental data [12,40,41,43,44] including recent one with

cellular models [45], which inspires confidence on the reliability of our hmC predictions.

Altogether, theoretical and experimental results strongly suggest that C➔mC➔hmC substi-

tution at d(CpG) steps leads to small changes in structure and to a small, and environment spe-

cific increase in the stiffness (hmC>mC>C), which is reflected in a reduction of nucleosome

affinity. Very interestingly, the behavior of DNA containing hmC is much closer to that of

met-DNA than that of unmodified DNA, which means that the “reversion” to the unmodified

DNA behavior found when methylated DNA is processed by TET-proteins to yield hmC-DNA

[22] cannot be explained by changes in the intrinsic physical properties of DNA and the associ-

ated recovering of the nucleosome distribution.

2.4 The impact of epigenetic modifications on the recognition properties of

DNA

The preferred recognition pattern of DNA changes with epigenetic modifications and this can

modulate DNA-protein contacts. Thus, DNA containing CpG steps exhibits a preferred region

of interaction with cations along the minor groove (Fig 6) (see Materials and Methods) [58].

Cytosine methylation widens slightly the minor groove, displacing the preferred interaction

region to the backbone and hydroxymethylation makes the major groove the preferred inter-

action region (see examples in Fig K in S1 File), probably because of the presence of a polar

Fig 6. Examples of classical molecular interaction potentials using sodium as a probe [82]. For the sake of

comparison, all the averaged structure with the 3 epigenetic modifications of the cytosine were aligned and the same

isosurface -3.5 kcal/mol was computed.

https://doi.org/10.1371/journal.pcbi.1009547.g006
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group. The polarity of the CH2OH group is also visible in the water distributions (see examples

in Fig L in S1 File), where the integration of the hydroxyl into highly ordered strings of waters

leads in general to a very dense solvation atmosphere along the major groove.

Results above suggest epigenetic modifications alter DNA interaction pattern, which might

impact the binding of methylated DNA binding domains (MBDs). We focus here on the four

MBD proteins related to the regulation of gene expression: i) MeCP2, a protein with direct

(via repression transcription domain; TRD) and indirect (via recruitment of histone deacety-

lases) silencing activity in mature nerve cell [3,46,59], ii) MBD1 which represses directly (via

TRD) or indirectly (via recruitment of histone methylases) gene expression [46], iii) MBD2

which is also coupled to repression (directly through TRD, or indirectly through histone meth-

ylation and deacetylation), and which is known to induce NuRD- dependent nucleosome

remodeling [46,60,61]and finally iv) MBD3 which lacks TRD and which has been related to a

myriad of secondary interactions with other partners such as NuRD, DNMT and TET leading

to either gene expression or activation.[32,46,61].

We built models of the four MBD-DNA complexes from the available experimental data

(details in Materials and Methods and Supporting Methods S1 File), we used as starting struc-

tures well-solved complexes and with a clear definition of the interaction site between the

modified cytosine and the protein, without the need to sample the positioning [62]. The com-

plexes were solvated and used as starting conformations for MD simulations, coupled to ther-

modynamic integration (MD/TI), which combined with standard thermodynamic cycles (Fig

7) allowed us to determine the impact in binding of methyl-cytosine to hydroxymethyl-cyto-

sine change in protein binding (see Materials and Methods). Quite interestingly, despite the

very high sequence similarity the four studied MBD have a different discriminant hmC vs mC

power. Based on our simulations, MBD1 has the highest specificity for mC compared to hmC,

MBD2 and MeCP2 show a small preference for the methylated DNA, MBD3 seems unable to

distinguish between mC and hmC.

Analysis of the binding sites (Fig 8) allowed us to determine the origin of the differential

specificity. The four proteins have a large sequence similarity and identical fold. They recog-

nize d(CpG) steps (i.e. d(CpG)�d(CpG) by means of interactions along the major groove (N7

and O6) of the two guanines. Such interactions are made by two Arg in three of the proteins

(MeCP2, MBD1 and MBD2), while for MBD3 recognition is made by one Arg and one His,

suggesting a lower specificity (Fig 8A). The electrostatic environment of the protein pocket

where the hydroxyl group is placed is also different, in the MBD1, the protein with highest

affinity for mC, the methyl group is placed in a pocket defined by residues such as VAL and

PHE defining a quite hydrophobic cavity. When the methyl is hydroxylated, the OH-group is

embedded in a unfavourable apolar environment (see white surface in Fig 8B left panel). On

the contrary, in MDB3 the hydroxyl group are placed in a hydrophilic/polar cavities, interact-

ing with ASP and a SER (see red and green surface in Fig 8B). These theoretical results are sup-

ported by a myriad of experimental evidences, for example, MBD1 is known to be the protein

with the largest specificity for methylated DNA, while MBD3 is known to be the most promis-

cuous of all MBD [46]. There is also good agreement with in vitro binding estimates by Hashi-

moto et al. [63], which suggests the same range of mC/hmC specificity than that found here.

In summary, MD/TI simulations strongly suggest that mC➔hmC introduces a general

decrease in binding affinity in MBD proteins with repressive activities, reversing then the inac-

tivating signals associated with cytosine methylation. On the contrary, MBD3, which shows

that largest sequence variability at the recognition site has no preference between the two epi-

genetic variants. This suggests that MBD3-associated signaling is not affected, which might

yield to specific activation or deactivation of genes. The final consequences of the presence of

d(hmCpG) steps should be then not only a general activation of gene activity (reversing
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methylation signal), but a qualitative gain in the complex and promiscuous MBD3 associated

signaling.

Experiments and calculations suggest that the presence of hmC in both strands of a d(CpG)

step leads to minor structural changes in the DNA duplex, but to non-negligible changes in

physical properties, which are reflected in a general increase in the stiffness of DNA that

becomes evident in MD simulations and is validated by circularization experiments. This

increase in stiffness implies a reduced ability to wrap around nucleosomes, as suggested by

MD simulations and demonstrated by gel reconstitution experiments. Very interestingly, both

simulations and experiments suggest that hydroxymethylated DNA is even stiffer than methyl-

ated DNA, precluding that physical properties could justify the known reversion to unmethy-

lated behavior which is coupled to the d(mCpG)➔d(hmCpG) transformation catalyzed by

TET. In fact, our results suggest a small impact of d(mCpG)➔d(hmCpG) transformation on

chromatin conformation.

Fig 7. Diagram of the thermodynamic cycle used to extract the free energy variation (ΔΔG (kcal/mol)) in

nucleosome-DNA stability due to methylation of CpG steps. The calculations were performed for each different

MBD protein-DNA complex, interchanging hmC and mC and computing the associated reversible work by MD/TI.

Positive ΔΔG values mean that the complex binding to met-DNA is more favorable than to the hydroxymethylated

one. As a control of the quality of our theoretical estimates, free energy calculations were done also for the transition

from mC to C. The results suggest a strong destabilization of MDB1 binding (2.2±0.4 kcal/mol), a moderate

destabilization of MBD2 and MeCP2 binding (0.8±0.6 and 0.5±0.4) and no appreciable effect on MBD3 binding (0

±0.6), values which agree well with in vitro experimental estimates [63].

https://doi.org/10.1371/journal.pcbi.1009547.g007
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Fig 8. A) Detail of the Arg-recognition model for each MBD-DNA complex (see Methods for detail), arginines

interacting with the guanines paired to the epigenetically modified cytosines. B) Protein surface closest to the modified

cytosine (hmC), showing the interaction cavity hydroxyl group for the two extreme examples MDB1 (left panel) and

MDB3 (right panel).

https://doi.org/10.1371/journal.pcbi.1009547.g008
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The presence of the hydroxymethyl in the major groove of changes the recognition proper-

ties of DNA and this is expected to modify binding of many effector properties, modulating

then in a complex way DNA activation and repression pathways. In this paper we have cen-

tered our attention in MBD, the major elements for recognition of methylation signals. Accu-

rate MD/TI calculations strongly suggest that d(mCpG)➔d(hmCpG) transformation leads to

reduction of the affinity of binding for all MBD coupled to repressive action, while binding to

MBD3, the only methyl-binding domain with dual (activation/repression) activities is not

affected. Simulations suggest then that a significant part of the biological effect of d(mCpG)

➔d(hmCpG) transformation can be related to an unbalance in the recognition of DNA by

MBD proteins.

3 Materials and methods

3.1 UV-monitored thermal-denaturation studies

Modified and unmodified 8-nucleotide DNAs (CGAC�GTCG) were synthetized (details in

Supporting Methods and Table K in S1 File) and their absorbance versus temperature curves

of each duplex was measured at 5 μM, 20 μM and 66 μM strand concentration in phosphate

buffer (25 mM) containing NaCl (100 mM). Experiments were performed in Teflon-stoppered

quartz cells of 1 cm and 1mm length path on a JASCO V-650 spectrophotometer equipped

with thermoprogrammer. The samples were heated to 90˚C, allowed to cool slowly to 25˚C,

and then warmed during the denaturation experiments at a rate of 0.5˚C min-1 to 90˚C. The

absorbance was monitored at 260 nm. The data were analyzed by the denaturation-curve pro-

cessing program, MeltWin v.3.0. Melting temperatures (Tm) were determined by computer fit

of the first derivative of absorbance with respect to 1/T. These values were designed to give

uniformly separated data points on ln (Ct/4) scale. ΔH, ΔS, and ΔG values were estimated from

dependence of melting temperatures on DNA concentrations [64]. The reciprocal values of

average melting temperatures were plotted against ln (Ct/4) and fitted to linear relationships,

1/Tm = (R/ΔH) ln(CT/4) + (ΔS/ΔH).

3.2 NMR

Samples of the duplexes with a central CpG step: d(CGTC�GACG)�d(CGTC�GACG) and d

(CGAC�GTCG)�d(CGAC�GTCG) with and without epigenetic modifications (synthesis

details in Supporting Methods in S1 File) were dissolved in either D2O or 9:1 H2O/D2O in 100

mM NaCl and 10 mM sodium phosphate, pH = 7 buffer. All NMR spectra were acquired in

Bruker Avance spectrometers operating at 600 and 800 MHz, equipped with cryoprobes and

processed with the TOPSPIN software. DQF-COSY, TOCSY and NOESY experiments were

recorded in D2O at 25˚C. In the experiments in D2O, presaturation was used to suppress the

residual H2O signal. The NOESY spectra in D2O were acquired with a mixing time of 250 ms.

TOCSY spectra were recorded with standard MLEV17 spinlock sequence, and a mixing time

of 80 ms. NOESY spectra in H2O were acquired with 150 ms mixing time at 5˚C to reduce

exchange with the water. In 2D experiments in H2O, water suppression was achieved by

including a WATERGATE module prior to acquisition. The spectral analysis program

SPARKY (D. K. TD Goddard and D. G. Kneller, SPARKY v3, University of California, San

Francisco) was used for semiautomatic assignment of the NOESY cross-peaks and quantitative

evaluation of the NOE intensities. Additional details of the NMR analysis are given in S1 File.

Coordinates and NMR restraints have been deposited in the Protein Data Bank, PDB IDs

7OGV, 7OHE, 7OHJ and 7OHM.
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3.3 Refinement of the experimental NMR structures

Ensembles of structures using atomistic force-fields based on the distance constraints obtained

experimentally were calculated using classical and usual annealing procedure similar to that

used to refine most NMR structures [65]. Accordingly, ideal fiber B-DNA and A-DNA struc-

tures are thermalized (298 K) and equilibrated for 100 ps each (using the same options

described previously), applying harmonic restraints of 100 kcal/mol�Å2 on the DNA. Then, a

500 ps MD simulation is performed where the global restraints are replaced by the specific

NMR distance constraints obtained experimentally. To obtain the final ensemble, 50 structures

were chosen and minimized in vacuo, keeping the NMR constraints.

3.4 HydroxyMethylCytosine parameterization

Geometrical parameters for hmC were derived starting from parmbsc1 [49] cytosine and ser-

ine from ff14SB for hydroxymethyl group. Final hmC geometry was obtained by energy mini-

mization [66]. Charges were derived from RESP fit at HF/6-31G� level starting from an

optimized hmC capped at the C1’ using the procedure described in reference [67]. Library

with parameters for hmC are available upon request.

3.5 Molecular dynamics simulations

We performed molecular dynamics (MD) simulations for 33 12-mer DNA duplexes of

sequence CGCGXC�GYCGCG, being C� = C, mC or hmC, with X and Y selected to represent

all the 10 possible unique tetranucleotide environments containing a central CG step, were

each simulated for 0.5 μs. Additionally the poli(CpG) sequence C�GC�GC�GC�GC�GC�G

being C� = C, mC or hmC were simulated. Starting structures were taken from Arnott canoni-

cal B-DNA [68], and oligomers were built using the Nucleic Acid Builder [69], epigenetic

modification (mC and hmC) were afterwards added to the duplex. The oligomers were simu-

lated using periodic boundary conditions with a truncated octahedral box and an explicit sol-

vent of TIP3P water molecules [70], with a minimum thickness of 10 Å around the solute. The

DNA net charge was neutralized with K+ cations and K+Cl− ion pairs substituted water mole-

cules to reach a concentration of *0.15 M. Each oligomer was simulated using the AMBER 18

[71] program suite and considering the 3 epigenetic modifications led to a total of 33 simula-

tions and 16.5 μs of unrestrained trajectories. The simulation was performed using our well-

established multistep protocol [72–74] which involves energy minimizations of the solvent,

slow thermalization and a final re-equilibration for 10 ns, prior to the 0.5 μs production runs.

All simulations were carried out in the isothermal-isobaric ensemble (T = 298 K, P = 1 atm)

using the parmbsc1 force field [49] and Dang parameters for ions [75,76]. Long-range electro-

static effects were treated using the Particle Mesh Ewald method [77] using a cutoff of 10 Å.

The bonds involving hydrogen were restrained using SHAKE [78] and The temperature and

the pressure, with a coupling constant of 5 ps were controlled using Berendsen algorithm [79].

Trajectories, data, analyses and parameters for methylated and hydroxymethylated cytosines

are available in our BigNAsim database [80], following recent recommendations for FAIR tra-

jectory storage [81].

3.6 Analysis of the trajectories

All the trajectories were processed with the cpptraj module of the AmberTools 18 package

[71]. The ability of DNA to recognize sodium was analysed using our classical molecular inter-

action potential (cMIP [82]). The electrostatic interaction term was determined by solving the

linear Poisson–Boltzmann equation, while the van der Waals contribution was determined
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using standard AMBER Lennard–Jones parameters. The ionic strength and the reaction-field

dielectric constant were set to 0.15 and 78.4 M, respectively, while the dielectric constant for

DNA was set to 8 [83]. The molecular plots were generated using either VMD 1.9 [84] or the

UCSF Chimera package version 1.8.1 [85].

3.7 Analysis of DNA physical properties and Deformation Energy

calculation

DNA helical parameters and backbone torsion angles were measured with the Curves+ and

Canal programs [86] along the MD simulations and for X-ray crystal structures. From the

ensemble of MD simulations, the covariance matrix describing the deformability of the helical

parameters for each dinucleotide step was computed and inverted to generate the 6×6 stiffness

matrix, resulting in the force constants for helical deformation at the base pair step level

[53,54]. To be noted that our method is a simplified model, where we considered a reduce stiff-

ness matrix and that our deformation energy model does not consider explicitly the nearest

neighbor correlations but only the tetrameric effect on the central CpG step. Average and

force constants were calculated for the last 200ns of each MD simulation. The position of each

cation in curvilinear cylindrical coordinates for each snapshot of the simulations with respect

to the instantaneous helical axis was determined using Canion, a utility program that reads the

ion counts [58]. Deformation energy for the wild type, mCpG and hmCpG DNA sequences

was calculated using our mesoscopic energy model [13], with parameters fitted (see above) for

each epigenetic modification in each tetramer environment (see above).

3.8 Circularization assays

Phosphorylation and radioactive labeling. Every single stranded oligonucleotide (1

nmol) was 5’-end-phosphorylated with 40U of T4 Polynucleotide kinase (New England Bio-

labs) by incubation at 37˚C in 1x T4 DNA Ligase Reaction Buffer.

Annealing and ligation. The complementary strands were denatured at 90˚C and subse-

quently annealed by gradually decreasing the temperature to room conditions. Double

stranded oligonucleotides were then multimerized with 400U of T4 DNA ligase (New England

Biolabs) by an overnight incubation at room temperature. The reaction was stopped by inacti-

vating the ligase at 65˚C for 10 minutes. The DNA was ethanol precipitated and dissolved in

10 μl of DNAse free water.

Two-Dimensional Gel Electrophoresis. The ligation/digestion products were loaded on

a 5% polyacrylamide native gel (19:1 acrylamide:bisacrylamide) and electrophoresed at room

temperature at 4 V/cm in TBE buffer. After separating the different DNA species on the first

dimension, the lanes of interest were excised from the gel and loaded on a two dimensional gel

(8% polyacrylamide) to separate circular and linear DNA. The separation of the two families of

DNA was facilitated by the presence of chloroquine phosphate (250 μg/ml) that distorts the

linear molecules of DNA in a different way from the circular ones (3). The gels were stained

with SyBr Safe (Invitrogen) and visualized on the ImageQuant system (GE Healthcare) under

UV light (see Results).

3.9 In vitro nucleosome reconstitution

Free energies for histone binding in in vitro nucleosome reconstitution were measured for the

wild type 601 sequence and the epigenetically mutate versions, mCpG601 and hmCpG601

(methods details in S1 File). The 3 forms of the high affinity 601.2 DNA sequence (sequences

in S1 File), with normal C-, mC-, hmC-DNA were chemically synthetized starting from the

oligos 65-, 66-, 80- and 81-nucleotide long DNAs on the 0.2 μmol scale on an Applied
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Biosystems 394 synthesizer (see Supporting Methods in S1 File for details and Table K in S1

File). We introduced 2 CpG base pair steps 5 or 11 base pairs apart: in positions that face the

protein core through the minor and major groove or, alternatively, only the major grooves.

Such positions explore sites in the nucleosomal DNA of negative and positive opening of the

base pairs along their long axis [13]. Bands intensities corresponding to nucleosome-bound or

free DNA were measured by densitometry using the PhosphorImager system (GE Healthcare)

(Fig M in S1 File). Bands intensities quantitation allowed to calculate the affinity for each

sequence to form nucleosome as the ratio of counts in nucleosome bound DNA to counts in

free DNA. Experimental normalised affinity was then computed dividing the relative affinity

for methylated or hydroxymethylated sequences by the control (unmodified cytosine). Each

experiment, for each sequence, was repeated four times.

3.10 Thermodynamic integration

We used a thermodynamic cycle to compute the reversible work associated to the alchemical

transformation between two DNA sequences (between mC and hmC), both in the bound and

in the unbound state for a list of all MDB protein-DNA complexes (Supporting Methods in S1

File). The details on how these calculations were carried out are explained in a previous work

in which we used the same method to calculate the variation in free energy adding methylation

in a nucleosome complex [13]. In this case, to achieve the alchemical transformation between

mC and hmC, our molecular dynamics simulations convert the hydroxyl group in position 5

of the cytosine ring into a hydrogen atom. In each complex for each mutation, the variation of

λ is discretized in 21 windows, i.e. dλ = 0.05, and the final ΔG is computed via numerical inte-

gration. We used soft-core potentials implemented in GROMACS to avoid singularities in the

Lennard-Jones and Coulomb potentials, with α = 0.3, σ = 0.25 and a soft-core power of 1. The

initial structures for each window were obtained from a 10 ns simulation in which λ was con-

tinuously varied from 0 to 1. From this simulation we extracted frames corresponding to a

given λ value, and we relaxed the structures by minimizing the energy of the system in those

configurations. We simulated each window at fixed λ value for 1 ns, and we discarded the first

100 ps of simulation. For each window we collected estimates for h(δH)/δλiλ by using blocks

of 20 ns, which were then integrated through the entire mutation pathway to obtain mutation

free energies (with associated statistical errors). All the sequences used in this work, for

computational and/or experimental analyses are listed in Supporting Methods in S1 File.

Supporting information

S1 File. This file contains Supporting Methods and Tables A-K and Figs A-M. Table A.

Melting Temperatures (Tm in ˚C) for the oligonucleotide CGAC�GTCG, where C� stands for

cytosine (C), methylated-cytosine (mC) and hydroxymethylated-cytosine (hmC) respectively,

calculated by UV experiments at different oligo concentrations. Table B. Variation in thermo-

dynamic parameters, enthalpy (ΔH in Kcal/mol), entropy (ΔS in cal/mol�K) and free energy

ΔG (Kcal/mol), at 25˚C calculated using Van’t Hoff equation (see Methods) from UV data for

the oligomer in Table K with cytosine, methylcytosine and hydroxymethycytosine respectively.

Table C. Assignment of the proton resonances of the hMC duplex (CGAhCGTCG)2, where

hC = 5-hydroxymethylcytosine. Buffer conditions: 25 mM sodium phosphate, 100 mM NaCl,

T = 5˚C, pH 7. Table D. Assignment of the proton resonances of the 5MC duplex

(CGAmCGTCG)2, where mC = 5-methylcytosine. Buffer conditions: 25 mM sodium phos-

phate, 100 mM NaCl, T = 5˚C, pH 7. Table E. Assignment of the proton resonances of the

control duplex (CGACGTCG)2. Buffer conditions: 25 mM sodium phosphate, 100 mM NaCl,

T = 5˚C, pH 7. Table F. Assignment of the proton resonances of the hMC duplex d
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(CGCGAhCGTCGCG)2. Buffer conditions: 25 mM sodium phosphate, 100 mM NaCl,

T = 5˚C, pH 7. Table G. Assignment of the proton resonances of the control duplex d

(CGCGACGTCGCG)2. Buffer conditions: 25 mM sodium phosphate, 100 mM NaCl, T = 5˚C,

pH 7. Table H. NMR restraints and structural calculation statistics. Table I. Average parame-

ters (in Å and Degrees) averaged over the last 200 ns for the central step (d(C�pG)�d(C�pG))

in the different tetrameric environments between the different forms of cytosine, Hydroxy-

MethylC, MethylC, Cytosine. Table J. Diagonal stiffness constants for translational move-

ments in kcal/mol ang2 for the central C�pG step (C� = C, mC and hmC) in the different

tetrameric environments. Table K. Mass spectrometry analysis of synthesized oligonucleo-

tides. Fig A. Regions of NOESY spectra (150 ms mixing time) of hMC (CGA�CGTCG)2

duplexes, �C = hMC (top), 5MC duplex (middle) and C (control) duplex (bottom). H1’-base

assignment pathways are indicated. Buffer conditions: 100 mM NaCl, 25 mM sodium phos-

phate, T = 5˚C, pH 7. Fig B. Imino region of the NOESY spectra in H2O (τm = 150 ms) of

(CGA�CGTCG)2 duplexes, �C = hMC (right), 5MC (middle), and C (control) duplex (left).

Buffer conditions: 100 mM NaCl, 25mM sodium phosphate, T = 5˚C, pH 7. Fig C. 1H-31P

correlation spectra for hMC (right), 5MC (middle), and control duplex (left). Buffer conditions

were 100 mM NaCl, 25mM sodium phosphate, T = 5˚C, pH 7. Fig D. Chemical shifts differ-

ences for non-exchangeable protons between hMC (top) and 5MC (bottom) with respect to

the control duplex. Fig E. Overlap of the central tetramer of the average NMR structures (light

blue) with the average structure from MD (green), for the tetramers ACGT, AMGT, AHGT,

TCGA and THGA. RMDs calculated between the structures for heavy atoms 0.95, 0.69, 0.98,

1.1, 0.76 Å respectively. Fig F. Twist profile for the hemi-hydroxymethylated sequence in the

X-ray crystal structures 4GLH (red line), 4HLI (green line) and 4GLC (blue line). HG/CG

steps are characterised by low-twist state. Fig G. Hydrogen bonds detected along the MD sim-

ulations among hydroxy group of hmC (OH, hmC position 6) and the flanking bases (guanine

7, adenine 5). We detected the formation of hydrogen bonds between the hydrogen of the

hydroxyl group and the neighbouring guanine (G7); in particular between the hydrogen of the

hydroxyl group and the nitrogen 7 (panel A) OHN7-G7O6-G7OHAHGT A(N7)—hmC(OH)

N7-A5OHABCDH42-hmCOH or/and the oxygen 6 (panel B) of the guanine. We also detected

a HB between the hydroxyl hydrogen and the oxygen of the backbone (panel C). It is worth

noticing that these hydrogen bonds are formed maximum the 0.039 fraction of the simulation

time and they are not stable. Nevertheless, the interaction between hmC and G7 indicates that

the base pair can assume a more distorted conformation, that reflects into an opening of the

minor groove, high roll. In the AC�GT tetramer (panel D) the hydroxyl group interacts also

with the adenine (A6), and not only with the following guanine. This behaviour translates into

the stiffer and higher twist of the tetramers XCGY where X is a purine and Y a pyrimidine

base. Fig H. Correlations between the neighboring base pair (j-> j+1), starting from the cen-

tral C�G (j = 6), averaged over all the dodecamers simulated. We found correlation, as previ-

ously reported [1], between twist-twist, tilt-tilt, shift-shift (left to right panels) base pair

parameters. The correlation going from the central base pair C�G to the neighboring steps

decreases and does not go further than the j+1 (step = 7). Fig I. Replicas of the 2D polyacryl-

amide native gels showing different migrations of linear and circular DNA species oligomers

of 21 bp, respectively for Cytosine (C), Methylcytosine (mC) and Hydroxymethylcytosine

(hmC) containing fragments. Linear DNA molecules are positioned on the lower diagonal,

and circular DNA molecules are positioned on the upper diagonal (see Fig 4). Fig J. Periodicity

of the variation in deformation energy given by the positioning of the epigenetic modifications

respect to the histones in the nucleosome. In the top panel, in blue (light blue mC and dark

blue hmC) the variation in energy when the modifications are 5 base pairs apart. IIn the bot-

tom panel, energy variations (light red mC and dark red hmC) when the modifications are 11
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base pairs apart. In both plots a schematic image of the DNA modifications (red dots) when

they are positioned 5bps or 11 bps apart, in the minor or major grooves facing the histones (in

yellow). Fig K. Cation K+ concentration (molarity) along the minor and major grooves aver-

aged over the last 200 ns of the trajectories. K+ molarity distribution as a function of the angu-

lar dependence (in degrees) for the tetramers AC�GT and TC�GA where C� = C,mC,hmC (in

blue, green and red respectively). Fig L. Occupancy maps of water molecules in the major and

minor groove for the unmodified CpG, mCpG and hmCpG respectively in the two tetramer

AC�GG and TC�GA. Fig M. In vitro nucleosome core particle reconstitution. Results of the

four replicas of the gel mobility shift assays of nucleosomes reconstituted in vitro with a

147-bp 601 (with normal cytosines, methylated and hydroxylated respectively). The upper

bands (Nucleosome) correspond to histone core-bound DNA, and lower bands correspond to

unbound DNA (free DNA). Mk: DNA ladder for size band estimation.

(PDF)

S2 File. This file contains all the force constants for each base parameter and each possible

trimer with C�G base pair (C� = hmC, mC or C respectively).

(XLSX)

S3 File. This file contains all the force constants for each base pair parameter and each pos-

sible tetramer with central C�G base pair (C� = hmC, mC or C respectively).

(TXT)
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Funding acquisition: Modesto Orozco.

Investigation: Federica Battistini, Modesto Orozco.

Methodology: Federica Battistini, Pablo D. Dans, Montserrat Terrazas, Guillem Portella, Mir-
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