150 research outputs found

    Low divergent, high-power, single-mode terahertz wire lasers

    Get PDF
    We devise arrays of surface emitting THz QCLs exploiting two novel lithographic configurations: a) a dual periodicity slit architecture and b) corrugated sinusoidal wire laser cavities. Extremely low divergent optical beams, with up to 85 mW of emitted optical powers and 245 mV/A slope efficiencies have been reached

    Distributed feedback terahertz frequency quantum cascade lasers with dual periodicity gratings

    Get PDF
    We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the gratings necessary to provide optical feedback at a fixed frequency, and simultaneously, a far-field emission pattern centered at controlled angles, was designed through use of an appropriate wavevector scattering model. Single mode terahertz (THz) emission at angles tuned by design between 0° and 50° was realized, leading to an original phase-matching approach for highly collimated THz quantum cascade lasers

    Tuning a microcavity-coupled terahertz laser

    Get PDF
    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers

    A General Model of Dynamics on Networks with Graph Automorphism Lumping

    Get PDF
    In this paper we introduce a general Markov chain model of dynamical processes on networks. In this model, nodes in the network can adopt a finite number of states and transitions can occur that involve multiple nodes changing state at once. The rules that govern transitions only depend on measures related to the state and structure of the network and not on the particular nodes involved. We prove that symmetries of the network can be used to lump equivalent states in state-space. We illustrate how several examples of well-known dynamical processes on networks correspond to particular cases of our general model. This work connects a wide range of models specified in terms of node-based dynamical rules to their exact continuous-time Markov chain formulation

    Exact analysis of summary statistics for continuous-time discrete-state Markov processes on networks using graph-automorphism lumping

    Get PDF
    We propose a unified framework to represent a wide range of continuous-time discrete-state Markov processes on networks, and show how many network dynamics models in the literature can be represented in this unified framework. We show how a particular sub-set of these models, referred to here as single-vertex-transition (SVT) processes, lead to the analysis of quasi-birth-and-death (QBD) processes in the theory of continuous-time Markov chains. We illustrate how to analyse a number of summary statistics for these processes, such as absorption probabilities and first-passage times. We extend the graph-automorphism lumping approach [Kiss, Miller, Simon, Mathematics of Epidemics on Networks, 2017; Simon, Taylor, Kiss, J. Math. Bio. 62(4), 2011], by providing a matrix-oriented representation of this technique, and show how it can be applied to a very wide range of dynamical processes on networks. This approach can be used not only to solve the master equation of the system, but also to analyse the summary statistics of interest. We also show the interplay between the graph-automorphism lumping approach and the QBD structures when dealing with SVT processes. Finally, we illustrate our theoretical results with examples from the areas of opinion dynamics and mathematical epidemiology

    Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer

    Get PDF
    BACKGROUND The growth arrest-specific transcript 5 gene (GAS5) encodes a long noncoding RNA (lncRNA) and hosts a number of small nucleolar RNAs (snoRNAs) that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro. METHODS We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response. RESULTS GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue. CONCLUSIONS In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA)-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results

    Systemic Risk: Fire-Walling Financial Systems Using Network-Based Approaches

    Full text link
    The latest financial crisis has painfully revealed the dangers arising from a globally interconnected financial system. Conventional approaches based on the notion of the existence of equilibrium and those which rely on statistical forecasting have seen to be inadequate to describe financial systems in any reasonable way. A more natural approach is to treat financial systems as complex networks of claims and obligations between various financial institutions present in an economy. The generic framework of complex networks has been successfully applied across several disciplines, e.g., explaining cascading failures in power transmission systems and epidemic spreading. Here we review various network models addressing financial contagion via direct inter-bank contracts and indirectly via overlapping portfolios of financial institutions. In particular, we discuss the implications of the "robust-yet-fragile" nature of financial networks for cost-effective regulation of systemic risk.Comment: 19 pages, 7 figure

    Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    Get PDF
    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea
    corecore