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A General Model of Dynamics on Networks with

Graph Automorphism Lumping

Jonathan A. Ward and John Evans

University of Leeds, Leeds, LS2 9JT, UK
j.a.ward@leeds.ac.uk

Abstract. In this paper we introduce a general Markov chain model of
dynamical processes on networks. In this model, nodes in the network
can adopt a finite number of states and transitions can occur that involve
multiple nodes changing state at once. The rules that govern transitions
only depend on measures related to the state and structure of the net-
work and not on the particular nodes involved. We prove that symmetries
of the network can be used to lump equivalent states in state-space. We
illustrate how several examples of well-known dynamical processes on
networks correspond to particular cases of our general model. This work
connects a wide range of models specified in terms of node-based dynam-
ical rules to their exact continuous-time Markov chain formulation.

Keywords: Dynamics on networks, Markov chains, graph automorphisms,
lumping, epidemic models, opinion dynamics, social physics.

1 Introduction

Dynamical processes on networks are one of the main topics of network science
[5,51,55]. The ubiquity of networks means that a wide range of phenomena have
been modelled as dynamical processes on networks, including epidemics [41,52],
magnetism [24], opinion dynamics [23, 60, 61], diffusion of innovations [6, 46,
47, 64], rumour spread [17, 31, 38], meme popularity [29], cultural polarisation
[1, 10], racial segregation [57, 58], stock market trading [40], cascading failures
[27,32,50] and language evolution [4,9,14]. For example, the study of epidemics
on networks includes research on the effect that network structure has on the
epidemic threshold [8, 12], a variety of methods to approximate the dynamics
[19,53] and the effectiveness of vaccination strategies [54]. For thorough reviews
of epidemic models on networks, see [41, 52]. As another example, the study
of opinion dynamics makes use of simple models of voting behaviour based on
binary [34], multi-state [62] and continuous [18, 33] opinions, where voters take
into account the opinions of one [60] or more [7, 11, 23, 61] neighbours, with the
possibility of zealots with fixed opinions [48]. Typically, the effect of network
topology on the mean-time to reach consensus [60] and the identification of
phase-transitions between ordered (consensus) and disordered (disagreement)
states [42,49] are of interest. Of fundamental importance in the study of dynamics
on networks is understanding the effect of network topology on dynamics.
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General models have been proposed that attempt to capture the wide vari-
ety of dynamical processes on networks [2, 3, 21, 25, 26, 41]. From these models,
one can derive high-accuracy approximations of the dynamics [21, 25, 26] and
identify redundancies in state-space due to network symmetries [2, 41, 44, 59].
However, these models only allow one node in the network to change its state
at any instant in time. We call such models single vertex-state transition mod-
els. In contrast, there are many models where multiple vertices change state at
once. Examples include the naming game of language evolution [4], the Schelling
model of segregation [57, 58], the Bonabeau model of hierarchy formation [9],
the Twitter model of meme propagation [29], and the Sznajd [61] and majority
rule [15,23] models of opinion dynamics. We call such models multi vertex-state

transition models. Understandably, analytical results are less common for multi
vertex-state transition models.

In this paper, after presenting some background material in Sect. 2, we re-
view five models in Sect. 3 that capture the main features of typical dynamical
processes on networks. Then in Sect. 4 we introduce a general model, which
accounts for multi vertex-state transitions, and in Sect. 5 we prove that the
state-space of our model can be lumped using graph automorphisms. In Sect. 6
we connect our general model to those described in Sect. 3 and we conclude with
a discussion of our work in Sect. 7.

2 Background

Let S = {S1, S2, . . . , Sn} be the state-space of a continuous-time Markov chain
whose time-dependent probability distribution over state-space is

X(t) = (x1(t), x2(t), . . . , xn(t))
T ,

where xi(t) is the probability of being in state Si at time t. The evolution of
X(t) is described by the master equation

Ẋ = QTX ,

also known as the forward Kolmogorov or differential Chapman-Kolmogorov
equation. The infinitesimal generator Q is an n by n matrix whose ijth com-
ponent describes the non-negative transition rate from the state Si to the state
Sj for i 6= j, and whose diagonal entries ensure the rows sum to zero (i.e. the
magnitude of Qii is the transition rate out of state Si). See, e.g. [39] for more
details about Markov chains. A partition of state-space L = {L1,L2, . . . ,Lr} is
called a lumping if it preserves the Markov property [37, 59]. A necessary and
sufficient condition for lumping is that for all i, j ∈ {1, 2, . . . , r} there exists an
Rij that satisfies

Rij =
∑

Sl∈Lj

Qkl , for all Sk in Li.

If yi =
∑

Sk∈Li
xk, and Y = (y1, y2, . . . , yr)

T, then the dynamics of the lumped
probability distribution Y (t) are described by

Ẏ = RTY .
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A network or graph G = (V, E) consists of a set of vertices or nodes V and
a set of edges or links E ⊂ V × V. A pair of vertices u, v ∈ V are neighbours

if (u, v) ∈ E and the neighbourhood of a vertex is its set of neighbours. An
automorphism of a network G is a bijection g : V → V such that (u, v) ∈ E
if and only if (g(u), g(v)) ∈ E . We use the shorthand gv = g(v). The set of
automorphisms of a network G form a permutation group G = Aut(G) called
the automorphism group of G [30].

3 Dynamical Processes on Networks

We now describe several examples of well-known dynamical processes on net-
works. These examples cover the main model features captured by the general
Markov chain model that we introduce in Sect. 4.

The SIS (susceptible-infected-susceptible) model [41, 52, 53] is one of the
most fundamental of epidemic models. Individuals in a finite population are
considered to be in one of two possible states, either Susceptible to an infection,
or Infected. Each susceptible individual is assumed to contract the infection with
a rate proportional to the number of infected individuals they are in contact with.
Where such contacts are described by a network, a susceptible node becomes
infected at a rate βm(t), where β is a positive rate constant and m(t) is the
number of infected neighbours they have at time t. In addition, each infected
individual is assumed to become susceptible again at a constant rate γ.

The SIR (susceptible-infected-recovered) model [41, 52] is another funda-
mental model of epidemics that is similar in formulation to the SIS model . In
the SIR model, individuals can also be in an additional Recovered state. As in
the SIS model on a network, a susceptible individual becomes infected at a rate
proportional to the number infected neighbours they have. In the SIR model
however, individuals recover at a constant rate γ and then remain recovered.

The voter model [13, 16, 60] is a simple model of opinion dynamics that is
specified in terms of a set of iterated rules. Individuals in a finite population
are assumed to have one of two possible opinions, typically denoted by ±1.
Individuals can be influenced by the opinions of others, and the structure of
who influences whom is usually represented by a network. At each discrete time-
step, an individual is chosen at random and they adopt the opinion of a randomly
chosen neighbour. This is repeated until consensus is reached.

The Twitter model [29] is a model of meme propagation in on-line social
networks such as Twitter. In a particular case of this model, each node in a
network has a screen that is either empty or displays a meme. At each time-
step, a node is selected at random and if they have a meme on their screen they
‘tweet’, i.e. the meme replaces whatever is on the screens of their neighbours.
This is repeated until all screens display the meme.

The Schelling model illustrates the formation of segregation in communi-
ties. There are several variations of the original model [57, 58], but we describe
the variant in [20], generalised to a network. Nodes in the network correspond to
the locations at which people can live and there are edges between neighbouring
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locations. Locations can be unoccupied or occupied by two different types of
people. A person of one type is unhappy if the proportion of occupied neigh-
bouring locations of the same type is below some threshold. At each time-step,
an unhappy person is selected at random and moves to an unoccupied location
chosen at random. This is repeated a fixed number of times or until everyone is
happy.

Of the models described above, the SIS and SIR models evolve in continuous-
time, whereas the voter, Twitter and Schelling model evolve in discrete-time;
the nodes in the SIS, voter and Twitter models have two possible states (i.e.
binary), whereas nodes in the SIR and Schelling model have three possibilities;
in the SIS, SIR and voter models, only one node changes state at any instant
in time, whereas in the Twitter and Schelling model, multiple nodes can change
state at once.

4 General Markov Chain Model of Dynamics on

Networks

In this section we will develop a general model of Markov chain dynamics on net-
works that captures the main features of the models described in Sect. 3. We as-
sume that the dynamics take place on a network G = (V, E) with automorphism
group G, and that at any point in time, each vertex in the network is associated
with one of a finite number of vertex-states. We denote the set of all possible
vertex-states by W. Thus for the SIR model W = {S, I,R} and for the voter
model W = {+1,−1}. A state of the network G is a map S : V → W , and the
state-space of G over W is the set of all possible states, denoted S = WV (i.e. the
set of all functions from V to W). Let M be the number of vertex-states and N
be the number of vertices, then the number of states in state-space is MN . Since
the state-space is finite, we assume that is has been enumerated in some way,
i.e. S = {S1, S2, . . . , SMN }. For example, if V = {1, 2, 3, 4} and W = {+1,−1},
then one of the 24 = 16 possible states, say Si ∈ S, has Si(1) = Si(3) = +1 and
Si(2) = Si(4) = −1.

Automorphisms of the network permute vertices, so we need to define how
they act on state-space. Let G be the automorphism group of G, then we define
the action of g ∈ G on a state Si ∈ S to be

(gSi)(v) = Si(g
−1v) for all v ∈ V, (1)

i.e. the vertex-state of v in gSi is the same as the vertex-state of g−1v in Si. It
is easy to prove that this is indeed an action of G on S in the group theoretic
sense (see e.g. [22] for a precise definition of an action of a group).

We focus on dynamical processes that can be represented as Markov chains
over the state-space S, where the time-dependent probability distribution over

state-space is X(t) ∈ R
MN

, as defined in Sect. 2. Here we assume that the dy-
namics evolve in continuous-time, but in Sect. 6 we illustrate how to choose the
continuous-time transition rates such that the embedded Markov chain corre-
sponds to a discrete-time model of interest.
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In our model, transitions will only occur between pairs of states where the
differing vertex-states are of particular types.

Definition 1. For Si, Sj ∈ S, the vertices U ⊂ V are called transition vertices

if for every u ∈ U , Si(u) 6= Sj(u) and for every v ∈ V \ U , Si(v) = Sj(v).

For notational convenience let W = {W1,W2, . . . ,WM}, i.e. we assume that
the vertex-states have been ordered in some way. For 1 ≤ m ≤ M , a sub-state

α is a vector in {0, 1, . . . , N}M whose mth component αm is the number of
transition vertices in the vertex-state Wm. We denote the set of allowable sub-

states by A ⊂ {0, 1, . . . , N}M and the set of allowable sub-state transition pairs

by T ⊂ A×A. Of all possible sub-states, only a few need be allowable, and these
must be identified by specific cases of our model. We use the set of allowable
sub-state transition pairs to identify pairs of states between which transitions
can occur.

Definition 2. We call Si, Sj ∈ S a transition pair, denoted

Si
α,β
∼ Sj , (2)

if (α, β) ∈ T and for each 1 ≤ m ≤ M , αm is the number of vertices u such that

Si(u) = Wm and Si(u) 6= Sj(u), and βm is the number of vertices v such that

Sj(v) = Wm and Sj(v) 6= Si(v).

We assume that the transition rate between a transition pair Si
α,β
∼ Sj de-

pends only on α, β and a vector of metrics µ(t) ∈ R
Λ, for integer Λ. This

assumption means that the transition rates do not depend on the particular set
of transition vertices. We call such models vertex homogeneous. Furthermore,
we assume that µ is invariant under network automorphisms. In more detail,
if G is the automorphism group of the graph G, then we assume there is a
function ηG : S × S → R

m that is a ‘structural measure’ [56], i.e. that satisfies
ηG(Si, Sj) = ηG(gSi, gSj) for all Si, Sj ∈ S and g ∈ G. As an example, if there is
a single transition vertex then ηG might count the number of its neighbours in

each vertex-state. We also assume that, for each transition pair Si
α,β
∼ Sj with

µ = ηG(Si, Sj), the transition rate is given by a known function qα,β(µ). Thus
the ijth component of the infinitesimal generator is

Qij =

{

qα,β(µ) if Si
α,β
∼ Sj and µ = ηG(Si, Sj),

0 otherwise.
(3)

This completes the specification of our general model. To summarise, the model
consists of a graph G, a state-space S over the graph’s vertices, a set of allowable
sub-state transition pairs T, a structural measure ηG and the transition rates
qα,β between all allowable sub-state transition pairs (α, β) ∈ T.
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5 Graph Automorphism Lumping

In this section we prove that the automorphism group G of the network G can
be used to lump the state-space S of the general model introduced in Sect. 4.
First note that transition pairs persist under automorphisms.

Lemma 1. If Si, Sj ∈ S and g ∈ G, then Si
α,β
∼ Sj if and only if gSi

α,β
∼ gSj.

This lemma is a direct consequence of Definition 2 and the action of the auto-
morphism group on state-space (1), since Si(u) = (gSi)(gu) for all u ∈ V.

It follows from our definition (1) of the action of G on state-space that S is a
G-set [22]. This means that we can partition state-space into equivalence classes
where a pair of states Si, Sj ∈ S are equivalent if and only if there is a g ∈ G
such that Si = gSj . This partition is known as the orbit partition of state-space.

Theorem 1. For the infinitesimal generator Q defined in (3), the orbit partition
of state-space under the action of G is a lumping of S.

The proof of this theorem draws on that of Theorem 2.11 in [41]. Our proof
is simplified by the fact that ηG is a structural measure, although it is generally
easy to prove that particular forms of ηG satisfy this requirement.

Proof. Let L = {L1,L2, . . . ,Lr} be the orbit partition of the state-space S under
the action of G. Suppose Sk ∈ Li and Sl ∈ Lj . For any Sn ∈ Lj , we can find a
g ∈ G such that Sn = gSl. Thus let Sm = gSk ∈ Li. From (3) and Lemma 1,
if Sk and Sl do not form a transition pair then Qkl = Qmn = 0, otherwise

Sk
α,β
∼ Sl and Sm

α,β
∼ Sn for (α, β) ∈ T. By definition, ηG(Sk, Sl) = ηG(Sm, Sn).

If µ = ηG(Sk, Sl), then Qkl = Qmn = qα,β(µ). Since S is a G-set, it follows that
g is a bijection on Lj . Thus for all Sk, Sm ∈ Li we have

∑

Sl∈Lj

Qkl =
∑

Sn∈Lj

Qmn,

and therefore L is a lumping. ⊓⊔

6 Example Applications

In this section we show that the dynamical processes on networks introduced in
Sect. 3 correspond to particular cases of our general model. We start by describ-
ing how to choose the transition rates so that the embedded Markov chain of our
general model coincides with a particular discrete-time model of interest. Recall
that when Qij is the transition rate from state Si to Sj of a continuous-time
Markov chain, the transition probability of the embedded discrete-time Markov
chain is Pij = −Qij/Qii [39]. The only part of our general model that is specific
to the continuous-time setting is the transition rate function qα,β . Thus to trans-
late a discrete-time model of dynamics on a graph G with state-space S, allowable
sub-state transition pairs T and structural measure ηG , as described in Sect. 4,
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we must be able to identify transition probabilities Pα,β(µ) between allowable
sub-state transition pairs that depend only µ = ηG(Si, Sj). Setting the transition
rates to be proportional to the transition probabilities, i.e. qα,β = τPα,β(µ), re-
sults in a continuous-time Markov chain whose embedded discrete-time Markov
chain is the discrete-time model of interest. Note that the constant of propor-
tionality τ just sets the time-scale of the transition rates.

As an example, consider the voter model on a graph G with N vertices. Recall
that vertices in the network have opinions ±1 and at each time-step a vertex is
picked at random and adopts the state of a randomly chosen neighbour. Thus
the set of vertex states is W = {+1,−1} and let W1 = +1 and W2 = −1. Since
only one vertex ever changes vertex-state at any time-step, the set of allowable
sub-states is A = {(1, 0), (0, 1)}, i.e. a single +1 vertex or a single −1 vertex. If
α = (1, 0) and β = (0, 1), then the set of allowable sub-state transition pairs is
T = {(α, β), (β, α)}. Transition pairs are then all pairs of states that differ in
vertex-state at only one vertex. The probability that a given vertex with vertex-
state ±1 is picked is 1/N and if it is picked then it changes vertex-state with
probability n∓/k, where n∓ is the number of neighbours it has with vertex-state
∓1 and k is its degree. Thus ηG(Si, Sj) should return (n+, n−, k). Note that n±

and k are invariant under automorphisms, since automorphisms do not change
the degree of a vertex and the action defined in (1) does not change the vertex-
states of neighbours. Thus this choice of ηG is a structural measure. If we choose
τ = N , then the transition rates are qα,β = n−/k and qβ,α = n+/k.

The voter model is an example of a binary state-space model with single
vertex-state transitions, and is a particular case of the general binary [25, 26]
and multi-state [21, 41] models with single vertex-state transitions proposed
in the corresponding references. In these models, Si, Sj ∈ S are transitions
pairs if they have a single transition vertex. If the set of vertex-states is W =
{W1,W2, . . . ,WM}, and the vertex-states of the transition vertex u are Si(u) =
Wk and Sj(u) = Wl, then the transition rate from from Si to Sj is given by
fWk,Wl

(n1, n2, . . . , nM ), where and nm is the number of neighbours of u whose
vertex-states are Wm. Note that each nm is invariant under automorphisms.
Specific forms of the transition rate fWk,Wl

that correspond to several examples
of well known models of dynamics on networks are given in [21, 26]. We can
easily identify the features of our general model from those in [21, 25, 26, 41].
The allowable sub-states are A = {αk | 1 ≤ k ≤ M}, where αk

m is one if m = k
and zero otherwise. The set of allowable sub-state transition pairs consists of
all distinct pairs of αk, i.e. T = {(αk, αl) | 1 ≤ k, l ≤ M and k 6= l}. The
structural measure ηG returns µ = (n1, n2, . . . , nM ) and the transition rates are
qαk,αl(µ) = fWk,Wl

(n1, n2, . . . , nM ).

The general model proposed in this paper also allows for multi vertex-state
transitions. For the Twitter model described in Sect. 3, let the set of vertex-
states be W = {E,A}, where W1 = E denotes empty and W2 = A denotes
a meme. Recall that a vertex is picked at random and if their vertex-state is
A then they change the vertex-state of all of their neighbours to A. Thus the
allowable sub-state transitions correspond to cases where groups of vertices all
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in state E that share a neighbour in state A all change to state A. If kmax

is the largest degree of all vertices in V, then the set of allowable sub-states
is A = {αk, βk | 1 ≤ k ≤ kmax} where αk = (k, 0) and βk = (0, k). The
set of allowable sub-state transition pairs is T = {(αk, βk) | 1 ≤ k ≤ kmax}.
The transition vertices of a transition pair must share at least one neighbour
that has vertex-state A, and the transition vertices are the only neighbours of
these A vertices that have vertex-state E. Thus the transition probability is
Pαk,βk = nk/N , where nk is the number of vertices in vertex-state A whose
only neighbours in vertex-state E are the k transition vertices. Since nk only
depends on the neighbourhoods of the transition vertices, it is invariant under
automorphisms. If we choose the rate constant τ = N and structural measure
ηG to return µ = nk, then the transition rates are qαk,βk(nk) = nk.

For the Schelling model, let the set of vertex-states be W = {E,A,B}, where
W1 = E denotes an unoccupied or empty site, and W2 = A and W3 = B are
the different types of occupied vertices. Recall that a vertex in vertex-state A
(B) is unhappy if the proportion of its neighbours in state A (B) is less than
a threshold, denoted by φ. At each time-step, an unhappy vertex is selected at
random and it chooses an empty location at random to move to, leaving its
original vertex empty. Note that the total number of vertices in each vertex-
state is conserved. The allowable sub-states are α = (1, 1, 0), i.e. one empty and
one A vertex, and β = (1, 0, 1), i.e. one empty and one B vertex. The set of
allowable sub-state transitions are T = {(α, α), (β, β)}. Note that a transition
exchanges the vertex-states, but the sub-states remain the same. Note that, by
definition, a pair of identical states can not form a transition pair. If an occupied
vertex is unhappy, then it is selected at random with probability 1/nu, where
nu is the number of unhappy vertices. An unoccupied vertex is then selected at
random with probability 1/nE , where nE is the number of empty vertices. Let
ηG return µ = (δ, nu), where δ = 1 if the occupied transition vertex is unhappy
and δ = 0 otherwise. Note that δ and nu only depend on the vertex-states in
neighbourhoods, so are invariant under automorphisms. If we choose the rate
constant τ = nE , then the transition rates are

qα,α(µ) = qβ,β(µ) =

{

1

nu

if δ = 1,

0 otherwise.

The allowable sub-states and sub-state transition pairs, structural metrics
and transition rates can be identified in a similar way for other models, such
as the naming game, the Bonabeau model, the Sznajd model and majority rule
model.

7 Discussion

In this paper we have introduced a general Markov chain model of dynamical
processes on networks and connected it to a range of well known models. One
of the most important assumptions of our model is vertex homogeneity, i.e.
that the dynamical behaviour is independent of the particular vertices involved.
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Relaxing this assumption would certainly weaken the state-space compression
resulting from network symmetries, in addition to complicating the identification
of transition pairs. However, it is our belief that such heterogeneity may not
necessarily add qualitatively new dynamics. For example, in traffic modelling,
the stability criteria of car-following models is qualitatively the same for both
homogeneous and heterogeneous driver behaviour [63]. Our assumption that
the transition rates depend only on a structural measure is fundamental to the
ability to lump the state-space on the basis of graph automorphisms. While this
may seem restrictive, if it were not true, the model would necessarily ignore
connectivity structure and negate the point of posing the model on a network in
the first place.

The work presented here focuses on the formulation of dynamical processes on
networks as Markov chains. It’s clear that for networks of even fairly small sizes
(e.g 40 vertices) with binary vertex-states, working with the full state-space is
prohibitive. However, there has recently been increased interest in the analysis
of dynamics on small networks [35, 43] and exploiting symmetries can have a
significant impact on the size of networks that can be studied [36]. It would
also be interesting to understand what can be said about the dynamics on the
full state-space from the ‘microscopic’ vertex transition rules, e.g. whether the
dynamics are ergodic or the nature of any absorbing states. It has recently been
shown that real-world networks have a surprising amount of symmetry [45]. In
a future publication, we will explore the impact of such symmetries on lumping
for the general model introduced here.

Exact analyses of Markov chain dynamics on networks are rare since authors
typically resort to mean-field approximations. These can do surprisingly well, but
it’s unclear what model and network features ensure this [28]. The simplest mean-
field approximation corresponds to the ‘well-mixed’ case, i.e. the fully connected
network or complete graph. The simplicity of this case results from the symmetry
present in the complete graph [41, 59]. It would be interesting to identify other
graphs where symmetry gives rise to significant lumping and better dynamical
approximations. However, our experience is that finding such graphs is extremely
difficult as they necessarily have to have a large amount of symmetry, and this
makes computing the lumped state-space difficult. Alternatively, there is scope to
develop more accurate mean-field approximations, similar to those in [21,25,26],
using the general model proposed here.

In summary, we have presented a general model of dynamics on networks.
One of the main purposes of this general model is to show how a wide range of
dynamical processes on networks can be formulated as Markov chains. Our hope
is that this will help to formalise the analytical treatment of more complex and
more realistic models, ultimately improving our understand of the phenomena
that they represent.
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44. MacArthur, B.D., Sánchez-Garćıa, R.J.: Spectral characteristics of network redun-

dancy. Physical Review E 80(2), 026,117 (2009)
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