9,292 research outputs found
Re-analysis of the nucleon space- and time-like electromagnetic form factors in a two-component model
Recent experimental data on space-like and time-like form factors of the
nucleon are analyzed in terms of a two-component model with a quark-like
intrinsic three-quark structure and quark-antiquark pairs.Comment: 9 pages, 5 figures, accepted for publication as a Brief Report in
Physical Review
Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model
The evolution of the structure factor is studied during the phase-ordering
dynamics of the kinetic Ising model with conserved order parameter. A
preasymptotic multiscaling regime is found as in the solution of the
Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is
always approached through a crossover from multiscaling to standard scaling,
independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let
Critical Exponents of the KPZ Equation via Multi-Surface Coding Numerical Simulations
We study the KPZ equation (in D = 2, 3 and 4 spatial dimensions) by using a
RSOS discretization of the surface. We measure the critical exponents very
precisely, and we show that the rational guess is not appropriate, and that 4D
is not the upper critical dimension. We are also able to determine very
precisely the exponent of the sub-leading scaling corrections, that turns out
to be close to 1 in all cases. We introduce and use a {\em multi-surface
coding} technique, that allow a gain of order 30 over usual numerical
simulations.Comment: 10 pages, 8 eps figures (2 figures added). Published versio
Ultrahigh dielectric constant of thin films obtained by electrostatic force microscopy and artificial neural networks
Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A detailed analysis of the electrostatic interaction between an electrostatic force microscope tip and a thin film is presented. By using artificial neural networks, an equivalent semiinfinite sample has been described as an excellent approximation to characterize the whole thin film sample. A useful analytical expression has been also developed. In the case of very small thin film thicknesses (around 1 nm), the electric response of the material differs even for very high dielectric constants. This effect can be very important for thin materials where the finite size effect can be described by an ultrahigh thin filmdielectric constant.This work was supported by TIN2010-196079. G.M.S. acknowledges support from the Spanish Ramón y Cajal Program
The non-linear q-voter model
We introduce a non-linear variant of the voter model, the q-voter model, in
which q neighbors (with possible repetition) are consulted for a voter to
change opinion. If the q neighbors agree, the voter takes their opinion; if
they do not have an unanimous opinion, still a voter can flip its state with
probability . We solve the model on a fully connected network (i.e.
in mean-field) and compute the exit probability as well as the average time to
reach consensus. We analyze the results in the perspective of a recently
proposed Langevin equation aimed at describing generic phase transitions in
systems with two ( symmetric) absorbing states. We find that in mean-field
the q-voter model exhibits a disordered phase for high and an
ordered one for low with three possible ways to go from one to the
other: (i) a unique (generalized voter-like) transition, (ii) a series of two
consecutive Ising-like and directed percolation transition, and (iii) a series
of two transitions, including an intermediate regime in which the final state
depends on initial conditions. This third (so far unexplored) scenario, in
which a new type of ordering dynamics emerges, is rationalized and found to be
specific of mean-field, i.e. fluctuations are explicitly shown to wash it out
in spatially extended systems.Comment: 9 pages, 7 figure
Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2
We compute the mass function of galactic dark matter halos for different
values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the
abundance of ultra-faint galaxies derived from the deepest UV luminosity
function available so far at redshift z~2. The magnitude limit M_UV=-13 reached
by such observations allows us to probe the WDM mass functions down to scales
close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This
allowed for an efficient discrimination among predictions for different m_X
which turn out to be independent of the star formation efficiency adopted to
associate the observed UV luminosities of galaxies to the corresponding dark
matter masses. Adopting a conservative approach to take into account the
existing theoretical uncertainties in the galaxy halo mass function, we derive
a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when
comparing with the measured abundance of the faintest galaxies, while m_X>1.5
keV is obtained when we compare with the Schechter fit to the observed
luminosity function. The corresponding lower limit for sterile neutrinos
depends on the modeling of the production mechanism; for instance m_sterile > 4
keV holds for the Shi-Fuller mechanism. We discuss the impact of observational
uncertainties on the above bound on m_X. As a baseline for comparison with
forthcoming observations from the HST Frontier Field, we provide predictions
for the abundance of faint galaxies with M_UV=-13 for different values of m_X
and of the star formation efficiency, valid up to z~4.Comment: 14 pages, 3 figures. Accepted for publication in The Astrophysical
Journa
- …