6 research outputs found

    Mode-coupling theory of lattice dynamics for classical and quantum crystals

    Full text link
    The dynamical properties of nuclei, carried by the concept of phonon quasiparticles (QP), are central to the field of condensed matter. While the harmonic approximation can reproduce a number of properties observed in real crystals, the inclusion of anharmonicity in lattice dynamics is essential to accurately predict properties such as heat transport or thermal expansion. For highly anharmonic systems, non perturbative approaches are needed, which result in renormalized theories of lattice dynamics. In this article, we apply the Mori-Zwanzig projector formalism to derive an exact generalized Langevin equation describing the quantum dynamics of nuclei in a crystal. By projecting this equation on quasiparticles in reciprocal space, and with results from linear response theory, we obtain a formulation of vibrational spectra that fully accounts for the anharmonicity. Using a mode-coupling approach, we construct a systematic perturbative expansion in which each new order is built to minimize the following ones. With a truncation to the lowest order, we show how to obtain a set of self-consistent equations that can describe the lineshapes of quasiparticles. The only inputs needed for the resulting set of equations are the static Kubo correlation functions, which can be computed using (fully quantum) path-integral molecular dynamics or approximated with (classical or ab initio) molecular dynamics. We illustrate the theory with an application on fcc 4He, an archetypal quantum crystal with very strong anharmonicity

    Étude des effets de la tempĂ©rature sur les combustibles nuclĂ©aires par une approche ab initio

    No full text
    To ensure the security of nuclear electricity production, an understanding of the behavior of nuclear fuel materials is necessary. This work aims at making a contribution to the study of the effects of temperature on nuclear fuels, by using an ab initio approach through density functional theory and ab initio molecular dynamics (AIMD). To explicity take account of the temperature, a non-perturbative lattice dynamics method is formalised, allowing to study the evolution of phonons and thermodynamic properties with temperature. In order to reduce the important computational cost of AIMD, a machine-learning based sampling method is developped, which allows to accelerate the simulation of materials at finite temperature. Those different methods are applied to describe the stabilisation of uranium-molybdenum alloy at high temperature, as well as the lattice dynamics of uranium and plutonium dioxides.Pour assurer la sĂ©curitĂ© de la production d’électricitĂ© par l’énergie nuclĂ©aire, une comprĂ©hension du comportement des matĂ©riaux servant de combustibles est nĂ©cessaire. Ce travail apporte une contribution Ă  l’étude des effets de la tempĂ©rature sur les combustibles nuclĂ©aires, en utilisant une approche ab initio Ă  travers la thĂ©orie de la fonctionnelle de la densitĂ© et la dynamique molĂ©culaire ab initio (AIMD). Pour prendre en compte explicitement les effets de la tempĂ©rature, une mĂ©thode non perturbative de dynamique des rĂ©seaux est formalisĂ©e, permettant ainsi d’étudier l’évolution des phonons et des propriĂ©tĂ©s thermodynamiques avec la tempĂ©rature. Afin de rĂ©duire le coĂ»t en temps de calcul important de l’AIMD, une mĂ©thode d’échantillonnage utilisant le machine-learning est dĂ©veloppĂ©e, ce qui permet d’accĂ©lĂ©rer les simulations de matĂ©riaux Ă  tempĂ©rature finie. Ces diffĂ©rentes mĂ©thodes sont appliquĂ©es pour dĂ©crire la stabilisation de l’alliage uranium-molybdĂšne Ă  haute tempĂ©rature, ainsi que la dynamique des rĂ©seaux des dioxydes d’uranium et de plutonium

    Étude des effets de la tempĂ©rature sur les combustibles nuclĂ©aires par une approche ab initio

    No full text
    To ensure the security of nuclear electricity production, an understanding of the behavior of nuclear fuel materials is necessary. This work aims at making a contribution to the study of the effects of temperature on nuclear fuels, by using an ab initio approach through density functional theory and ab initio molecular dynamics (AIMD). To explicity take account of the temperature, a non-perturbative lattice dynamics method is formalised, allowing to study the evolution of phonons and thermodynamic properties with temperature. In order to reduce the important computational cost of AIMD, a machine-learning based sampling method is developped, which allows to accelerate the simulation of materials at finite temperature. Those different methods are applied to describe the stabilisation of uranium-molybdenum alloy at high temperature, as well as the lattice dynamics of uranium and plutonium dioxides.Pour assurer la sĂ©curitĂ© de la production d’électricitĂ© par l’énergie nuclĂ©aire, une comprĂ©hension du comportement des matĂ©riaux servant de combustibles est nĂ©cessaire. Ce travail apporte une contribution Ă  l’étude des effets de la tempĂ©rature sur les combustibles nuclĂ©aires, en utilisant une approche ab initio Ă  travers la thĂ©orie de la fonctionnelle de la densitĂ© et la dynamique molĂ©culaire ab initio (AIMD). Pour prendre en compte explicitement les effets de la tempĂ©rature, une mĂ©thode non perturbative de dynamique des rĂ©seaux est formalisĂ©e, permettant ainsi d’étudier l’évolution des phonons et des propriĂ©tĂ©s thermodynamiques avec la tempĂ©rature. Afin de rĂ©duire le coĂ»t en temps de calcul important de l’AIMD, une mĂ©thode d’échantillonnage utilisant le machine-learning est dĂ©veloppĂ©e, ce qui permet d’accĂ©lĂ©rer les simulations de matĂ©riaux Ă  tempĂ©rature finie. Ces diffĂ©rentes mĂ©thodes sont appliquĂ©es pour dĂ©crire la stabilisation de l’alliage uranium-molybdĂšne Ă  haute tempĂ©rature, ainsi que la dynamique des rĂ©seaux des dioxydes d’uranium et de plutonium

    Détermination expérimentale des constantes élastiques de FeRh en fonction de la température et de la phase magnétique

    No full text
    The elastic constants of an epitaxial film of FeRh have been determined experimentally in both ferromagnetic (FM) and antiferromagnetic (AF) phases, using a combination of Brillouin light scattering and picosecond acoustics experiments. The C11 constant is noticeably larger in the FM phase than in the AF phase, while C12 and C44 are both lower, leading to larger Rayleigh wave velocities in the FM phase than in the AF phase. The elastic constants were calculated numerically using first principles anharmonic modeling and machine-learned interatomic potentials. We find that using a temperature-dependent effective potential is indispensable to correctly reproduce the experimental values to within 80 to 100%. The accurate knowledge of the temperature- and phase-dependencies of the elastic constants of crystalline FeRh are valuable ingredients for the predictive modeling of the acoustic and magneto-acoustic properties of this magnetostrictive material
    corecore