212 research outputs found

    Validation of X-ray fluorescence-measured Swine femur lead against atomic absorption spectrometry.

    Get PDF
    The aim of this study was to apply the technique of (109)Cd-based K-shell X-ray fluorescence (XRF) bone lead measurements to swine femurs and to validate the concentrations obtained therefrom against an independent chemical measurement of bone lead: atomic absorption spectrometry (AAS). The femurs ranged in lead concentration from 1.0 to 24.5 microg of lead per gram of ashed bone, as measured by AAS. On average, XRF overestimated AAS-measured femur lead by 2.6 microg/g [95% confidence interval (CI), 1.1-4.0 microg/g], approximately 2 microg/g poorer than that observed in studies of human tibiae. Measurements of swine femur and, by extension, of nonhuman bones may require adjustment of the XRF spectrum peak extraction method

    X-ray Investigation of the Critical Exponent η in Argon

    Get PDF
    Measurements were made of the small-angle x-ray scattering intensity from argon near the critical point. After the scattering curves are corrected for all known effects except those resulting from irrelevant variables, a value of the critical exponent η=0.09±0.02 is obtained, while if a correction for the estimated effect of irrelevant variables is also made, η=0.03±0.03. The scattering data for argon therefore show that if irrelevant variables can be neglected, the critical exponent η for argon is in good agreement with the value obtained by Warkulwiz, Mozer, and Green from small-angle neutron scattering data for neon. These values of η, however, are clearly greater than those obtained by calculations using high-temperature expansions and renormalizationgroup techniques. On the other hand, if the effects of irrelevant variables are given by the estimate used in correcting the scattering data, the η value computed from the scattering curves agrees with the theoretical results

    Nitrogen and Sulfur Fertilization in Soybean: Impact on Seed Yield and Quality

    Get PDF
    Over time, plant breeding efforts for improving soybean [Glycine max (L.) Merr.] yield was prioritized and effects on seed nutritional quality were overlooked, decreasing protein concentration. This research aims to explore the effect of nitrogen (N) and sulfur (S) fertilization on soybean seed yield, seed protein and sulfur amino acids concentration. In 2018, ten field trials were conducted across the main US soybean producing region. The treatments were fertilization at 1) planting (NSP); during 2) vegetative growth (NSV); and 3) reproductive growth (NSR) and 4) unfertilized (Control). Nitrogen fertilization was applied at the rate of 40 lb/a utilizing urea ammo­nium nitrate (UAN), and S at 9 lb/a via ammonium sulfate (AMS). A meta-analysis was performed to consider small variations among experimental designs. A summary of the effect sizes did not show effects for seed yield. However, fertilization at planting (NSP) increased seed protein by 1% more than the control across all sites. Overall, sulfur amino acid concentration increased by 1.5% relative to the control, but the most consistent benefit came from fertilization during the reproductive growth (NSR), increasing sulfur amino acids by 1.9%. Although N and S fertilization did not affect seed yields, applying N and S in different stages of the crop growth can increase protein concentration and improve protein composition, providing the opportunity to open new US soybean markets

    Incorporating lessons from high-input research into a low-margin year

    Get PDF
    Increased soybean commodity prices in recent years have generated interest in developing high-input systems to increase yield. However, little information exists about the effects of input-intensive, high-yield management on soybean yield and profitability, as well as interactions with basic agronomic practices

    Comparative oncology and clinical translation of glyco protein conjugated gold nano therapeutic agent (GA-198AuNP) [abstract]

    Get PDF
    Nanoscience Poster SessionAs part of our efforts toward clinical translation of GA-198AuNP, our studies are focused on therapeutic efficacy of nanoparticulate GA198AuNP agent in dogs with prostatic carcinoma. The overall goal is to gain clinical insights on therapeutic efficacy of GA198AuNP in a large animal model. We have performed a phase I clinical trial using GA-AuNP administered intravenously or intratumorally by injection or infusion. CT scans were performed prior to injection and 24 hours post injection in 3 of the 4 dogs. Following injections, dogs were allowed further treatment as recommended by the primary attending clinician. Four dogs have been treated to date. Complications related to GA-AuNP treatment were not observed, and all 4 dogs received adjunctive treatment with radiation therapy and/ or chemotherapy. These preliminary studies have clearly provided compelling evidence on the therapeutic potential of biocompatible GA-AuNP for their utility as novel therapeutic agents in treating various types of inoperable solid tumors. Intra-tumoral and intravenous administration of GA-AuNP is safe in dogs with spontaneously occurring tumors. As further therapeutic efficacy studies continue, the outcome of this clinical trial in a large animal model will generate therapeutic efficacy data which will be used for filing IND application for Phase I clinical trial studies. This clinical translation effort provides significant advances in terms of delivering optimum therapeutic payloads into prostate cancers with subsequent reduction in tumor volume, thus may effectively reduce/eliminate the need for surgical resection. This presentation will include details of clinical translation of GA198AuNP in prostate tumor bearing dogs

    Rif1 Supports the Function of the CST Complex in Yeast Telomere Capping

    Get PDF
    Telomere integrity in budding yeast depends on the CST (Cdc13-Stn1-Ten1) and shelterin-like (Rap1-Rif1-Rif2) complexes, which are thought to act independently from each other. Here we show that a specific functional interaction indeed exists among components of the two complexes. In particular, unlike RIF2 deletion, the lack of Rif1 is lethal for stn1ΔC cells and causes a dramatic reduction in viability of cdc13-1 and cdc13-5 mutants. This synthetic interaction between Rif1 and the CST complex occurs independently of rif1Δ-induced alterations in telomere length. Both cdc13-1 rif1Δ and cdc13-5 rif1Δ cells display very high amounts of telomeric single-stranded DNA and DNA damage checkpoint activation, indicating that severe defects in telomere integrity cause their loss of viability. In agreement with this hypothesis, both DNA damage checkpoint activation and lethality in cdc13 rif1Δ cells are partially counteracted by the lack of the Exo1 nuclease, which is involved in telomeric single-stranded DNA generation. The functional interaction between Rif1 and the CST complex is specific, because RIF1 deletion does not enhance checkpoint activation in case of CST-independent telomere capping deficiencies, such as those caused by the absence of Yku or telomerase. Thus, these data highlight a novel role for Rif1 in assisting the essential telomere protection function of the CST complex

    Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous

    Get PDF
    Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont “Candidatus Liberibacter psyllaurous” (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant
    corecore