109 research outputs found

    Fitness of Leishmania donovani Parasites Resistant to Drug Combinations

    Get PDF
    Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line). In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.Plan Andaluz de Investigación (Proyecto de Excelencia CTS-7282), Junta de Andalucia (FG)Spanish Grants SAF2012-34267 (to FG)Spanish Grants SAF2011-28102 (to SC)Subdirección General de Redes y Centros de Investigación Cooperativa-FEDER, RICET project RD12/0018/0017 (FG)Peer reviewe

    Symmetrical Pyridinium-Phanes and –Diazacyclophanes — Promising Heterocyclic Scaffolds for the Development of Anti-Leishmanial Agents

    Get PDF
    There is an urgent need for better drugs for a more successful fight against leishmaniasis, one of the most important neglected diseases caused by the parasite Leishmania. We have recently synthesized several symmetrical pyridinium compounds belonging to two different series: bis-pyridinium and bis-quinolinium acyclic structures and bis-pyridinium diazacyclophanes derivatives. The first series of bis-pyridinium derivatives have been found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with EC50 values lower than 1 μM. The majority of compounds show a similar behavior in both Leishmania species, being slightly more active against intracellular amastigotes of L. major. The series of bis-pyridinium diazacyclophanes can be considered as rigid analogues of the previous bis-cationic ones. The activity of these compounds has also been evaluated against promastigotes and intracellular amastigotes of L. donovani and L. major. All the diazacyclophanes are more active against L. major, with EC50 values of between 1 and 17 μM in intracellular amastigotes, and in some cases they present a higher selectivity index than the reference anti-leishmanial drugs such as amphotericin B and miltefosine. In conclusion, these bis-quaternary compounds represent promising candidates as potential therapeutic agents against leishmaniasis

    Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum

    Get PDF
    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime®, 100 mg/kg/day for 28 days). After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to SbIII for promastigotes and >3-fold to SbIII and 3-fold to SbV for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates.This work was supported by the Spanish Grants Proyecto de Excelencia, Junta de Andalucía Ref. CTS-7282 (to F.G.), SAF2012-34267 (to F.G.), FEDER funds from the EU to S.C. and F.G., and by the University of Granada (CEI-Biotic project 2013/1/4 and Pilot Prototypes and Experiences PR/12/011)Peer reviewe

    Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs

    Full text link
    Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.This work was supported by grants (to B.A. and J.M.R.) from Proyecto del Ministerio de Economía, Industria y Competitividad (SAF2013-47556-R and SAF2017-86965-R, co-financed with FEDER funds), and from ISCIII, proyecto " RD16/0027/0008″ Red de Enfermedades Tropicales, Subprograma RETICS del Plan Estatal de I + D + I 2013–2016 y cofinanciado FEDER: Una manera de hacer Europa. The CBMSO receives institutional grants from the Fundación Ramón Areces and from the Fundación Banco Santander. Also, this work was supported by the Spanish Grant Proyecto de Excelencia, Junta de Andalucía, Ref. CTS-7282 (to F.G.

    Disruption of the Lipid-Transporting LdMT-LdRos3 Complex in Leishmania donovani Affects Membrane Lipid Asymmetry but Not Host Cell Invasion

    Get PDF
    Maintenance and regulation of the asymmetric lipid distribution across eukaryotic plasma membranes is governed by the concerted action of specific membrane proteins controlling lipid movement across the bilayer. Here, we show that the miltefosine transporter (LdMT), a member of the P4-ATPase subfamily in Leishmania donovani, and the Cdc50-like protein LdRos3 form a stable complex that plays an essential role in maintaining phospholipid asymmetry in the parasite plasma membrane. Loss of either LdMT or LdRos3 abolishes ATP-dependent transport of NBD-labelled phosphatidylethanolamine (PE) and phosphatidylcholine from the outer to the inner plasma membrane leaflet and results in an increased cell surface exposure of endogenous PE. We also find that promastigotes of L. donovani lack any detectable amount of phosphatidylserine (PS) but retain their infectivity in THP-1-derived macrophages. Likewise, infectivity was unchanged for parasites without LdMT-LdRos3 complexes. We conclude that exposure of PS and PE to the exoplasmic leaflet is not crucial for the infectivity of L. donovani promastigotes

    Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement

    No full text
    Leishmaniasis treatment is hampered by the increased appearance of treatment failure. ATP-binding cassette (ABC) transporters are usually involved in drug resistance both in tumor cells and in microorganisms. Here we report the characterization of an ABCG-like transporter, LiABCG6, localized mainly at the plasma membrane in Leishmania protozoan parasites. When overexpressed, this half-transporter confers significant resistance to the leishmanicidal agents miltefosine and sitamaquine. This resistance phenotype is mediated by a reduction in intracellular drug accumulation. LiABCG6 also reduces the accumulation of short-chain fluorescent phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. As a whole, these results suggest that LiABCG6 could be implicated in phospholipid trafficking and drug resistance. Copyright © 2008, American Society for Microbiology. All Rights Reserved.Peer Reviewe

    A new ABC half-transporter in Leishmania major is involved in resistance to antimony

    Get PDF
    The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.This study was supported by the Spanish grants SAF2012-34267 (to F.G.) and SAF2011-28102 (to S.C.), by the Plan Andaluz de Investigación (Cod. BIO130), and by FEDER funds from the EU to F.G. and S.C.Peer reviewe

    Leishmania donovani Develops Resistance to Drug Combinations

    Get PDF
    Drug combinations for the treatment of leishmaniasis represent a promising and challenging chemotherapeutic strategy that has recently been implemented in different endemic areas. However, the vast majority of studies undertaken to date have ignored the potential risk that Leishmania parasites could develop resistance to the different drugs used in such combinations. As a result, this study was designed to elucidate the ability of Leishmania donovani to develop experimental resistance to anti-leishmanial drug combinations. The induction of resistance to amphotericin B/miltefosine, amphotericin B/paromomycin, amphotericin B/SbIII, miltefosine/paromomycin, and SbIII/paromomycin was determined using a step-wise adaptation process to increasing drug concentrations. Intracellular amastigotes resistant to these drug combinations were obtained from resistant L. donovani promastigote forms, and the thiol and ATP levels and the mitochondrial membrane potential of the resistant lines were analysed. Resistance to drug combinations was obtained after 10 weeks and remained in the intracellular amastigotes. Additionally, this resistance proved to be unstable. More importantly, we observed that promastigotes/amastigotes resistant to one drug combination showed a marked cross-resistant profile to other anti-leishmanial drugs. Additionally, the thiol levels increased in resistant lines that remained protected against the drug-induced loss of ATP and mitochondrial membrane potential. We have therefore demonstrated that different resistance patterns can be obtained in L. donovani depending upon the drug combinations used. Resistance to the combinations miltefosine/paromomycin and SbIII/paromomycin is easily obtained experimentally. These results have been validated in intracellular amastigotes, and have important relevance for ensuring the long-term efficacy of drug combinations. © 2012 García-Hernández et al.Peer Reviewe

    A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids

    No full text
    ATP-binding cassette (ABC) transporters represent an important family of membrane proteins involved in drug resistance and other biological activities. The present work reports the characterization of the first ABC subfamily G (ABCG)-like transporter, LiABCG4, in the protozoan parasite Leishmania. LiABCG4 localized mainly to the parasite plasma membrane. Overexpression of this half-transporter reduced the accumulation of phosphatidylcholine analogues and conferred resistance to alkyl-phospholipids. Likewise, when expressed in Saccharomyces cerevisiae, the protein localized to the yeast plasma membrane and conferred resistance to alkyl-phospholipids. Post-Golgi secretory vesicles isolated from a LiABCG4-overexpressing yeast mutant contained the leishmanial ABC transporter and exhibited ATP-dependent, vanadate-sensitive transport of phosphatidylcholine analogues from the cytosolic to the lumenal leaflet of the vesicle membrane. Cross-linking showed dimerization of LiABCG4. These results suggest that LiABCG4 is involved in the active transport of phosphatidylcholine and resistance to alkyl-phospholipids in Leishmania. © 2007 The Authors.Peer Reviewe
    corecore