424 research outputs found

    Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)

    Get PDF
    The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso

    Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles

    Get PDF
    The ability to control size and morphology is crucial in optimizing nanoceria catalytic activity as this is governed by the atomistic arrangement of species and structural features at the surfaces. Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted hydrothermal synthesis in highly alkaline media. HRTEM revealed that the cube edges were truncated by CeO2{110} surfaces and the cube corners by CeO2{111} surfaces. When adjusting synthesis conditions by increasing NaOH concentration, the average particle size increased. Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges, CeO2{110}, and cube corners, CeO2{111} remained of constant size. Molecular Dynamics (MD) was used to rationalise this behaviour and revealed that energetically, the corners and edges cannot be atomically sharp, rather they are truncated by {111} and {110} surfaces respectively to stabilise the nanocube; both experiment and simulation agreed a minimum size of ~1.6 nm associated with this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges, which balances the surface energy associated with the exposed surfaces, which follows {111}>{110}>{100}, although only the {110} surface facets because of the ease of extracting oxygen from its surface, which follows {111}>{100}>{110}. Finally, MD revealed that the {100} surfaces are ‘liquid-like’ with a surface oxygen mobility 5 orders of magnitude higher than that on the {111} surfaces; this arises from the flexibility of the surface species network that can access many different surface arrangements due to very small energy differences. This finding has implications for understanding the surface chemistry of nanoceria and provides avenues to rationalize the design of catalytically active materials at the nanoscale

    Transcriptome, Methylome and Genomic Variations Analysis of Ectopic Thyroid Glands

    Get PDF
    Congenital hypothyroidism from thyroid dysgenesis (CHTD) is predominantly a sporadic disease characterized by defects in the differentiation, migration or growth of thyroid tissue. Of these defects, incomplete migration resulting in ectopic thyroid tissue is the most common (up to 80%). Germinal mutations in the thyroid-related transcription factors NKX2.1, FOXE1, PAX-8, and NKX2.5 have been identified in only 3% of patients with sporadic CHTD. Moreover, a survey of monozygotic twins yielded a discordance rate of 92%, suggesting that somatic events, genetic or epigenetic, probably play an important role in the etiology of CHTD.Journal ArticleResearch Support, Non-U.S. Gov'tValidation StudiesSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Novel associations for hypothyroidism include known autoimmune risk loci

    Get PDF
    Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the first large genome-wide association study of hypothyroidism, in 2,564 cases and 24,448 controls from the customer base of 23andMe, Inc., a personal genetics company. We identify four genome-wide significant associations, two of which are well known to be involved with a large spectrum of autoimmune diseases: rs6679677 near _PTPN22_ and rs3184504 in _SH2B3_ (p-values 3.5e-13 and 3.0e-11, respectively). We also report associations with rs4915077 near _VAV3_ (p-value 8.3e-11), another gene involved in immune function, and rs965513 near _FOXE1_ (p-value 3.1e-14). Of these, the association with _PTPN22_ confirms a recent small candidate gene study, and _FOXE1_ was previously known to be associated with thyroid-stimulating hormone (TSH) levels. Although _SH2B3_ has been previously linked with a number of autoimmune diseases, this is the first report of its association with thyroid disease. The _VAV3_ association is novel. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the four genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.1

    Ortho-Lithium/Magnesium Carboxylate-Driven Aromatic Nucleophilic Substitution Reactions on Unprotected Naphthoic Acids

    Get PDF
    Substitution of an ortho-fluoro or methoxy group in 1- and 2-naphthoic acids furnishing substituted naphthoic acids occurs in good to excellent yields upon reaction with alkyl/vinyl/aryl organolithium and Grignard reagents, in the absence of a metal catalyst without the need to protect the carboxyl (CO2H) group. This novel nucleophilic aromatic substitution is presumed to proceed via a precoordination of the organometallic with the substrate, followed by an addition/elimination

    Breeding young as a survival strategy during earth’s greatest mass extinction

    Get PDF
    Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises
    • …
    corecore